Baily–Borel compactification

Baily–Borel compactification   (Redirected from Baily–Borel theorem) Jump to navigation Jump to search In mathematics, the Baily–Borel compactification is a compactification of a quotient of a Hermitian symmetric space by an arithmetic group, introduced by Walter L. Baily and Armand Borel (1964, 1966).

Example If C is the quotient of the upper half plane by a congruence subgroup of SL2(Z), then the Baily–Borel compactification of C is formed by adding a finite number of cusps to it. See also L² cohomology References Baily, Walter L., Jr.; Borel, Armand (1964), "On the compactification of arithmetically defined quotients of bounded symmetric domains", Bulletin of the American Mathematical Society, 70 (4): 588–593, doi:10.1090/S0002-9904-1964-11207-6, MR 0168802 Baily, W.L.; Borel, A. (1966), "Compactification of arithmetic quotients of bounded symmetric domains", Annals of Mathematics, 2, Annals of Mathematics, 84 (3): 442–528, doi:10.2307/1970457, JSTOR 1970457, MR 0216035 Gordon, B. Brent (2001) [1994], "Baily–Borel compactification", Encyclopedia of Mathematics, EMS Press This geometry-related article is a stub. You can help Wikipedia by expanding it.

Categories: Algebraic geometryCompactification (mathematics)Geometry stubs

Si quieres conocer otros artículos parecidos a Baily–Borel compactification puedes visitar la categoría Algebraic geometry.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.


Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información