# Théorème d'Artstein

Artstein's theorem Artstein's theorem states that a nonlinear dynamical system in the control-affine form {style d'affichage {point {mathbf {X} }}= mathbf {F(X)} +somme _{je=1}^{m}mathbf {g} _{je}(mathbf {X} )tu_{je}} has a differentiable control-Lyapunov function if and only if it admits a regular stabilizing feedback u(X), that is a locally Lipschitz function on Rn{0}.[1] The original 1983 proof by Zvi Artstein proceeds by a nonconstructive argument. Dans 1989 Eduardo D. Sontag provided a constructive version of this theorem explicitly exhibiting the feedback.[2][3] See also Analysis and control of nonlinear systems Control-Lyapunov function References ^ Artstein, Zvi (1983). "Stabilization with relaxed controls". Nonlinear Analysis: La théorie, Methods & Applications. 7 (11): 1163–1173. est ce que je:10.1016/0362-546X(83)90049-4. ^ Sontag, Eduardo D. A Universal Construction Of Artstein's Theorem On Nonlinear Stabilization ^ Sontag, Eduardo D. (1999), "Stability and stabilization: discontinuities and the effect of disturbances", in Clarke, F. H; Stern, R. J; Sabidussi, g. (éd.), Nonlinear Analysis, Differential Equations and Control, Springer Netherlands, pp. 551–598, arXiv:math/9902026, est ce que je:10.1007/978-94-011-4560-2_dix, ISBN 9780792356660 This applied mathematics-related article is a stub. Vous pouvez aider Wikipédia en l'agrandissant.

Catégories: Control theoryTheorems in dynamical systemsApplied mathematics stubs

Si vous voulez connaître d'autres articles similaires à Théorème d'Artstein vous pouvez visiter la catégorie Les fiches de mathématiques appliquées.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations