Artsteins Theorem

Artstein's theorem Artstein's theorem states that a nonlinear dynamical system in the control-affine form {Anzeigestil {Punkt {mathbf {x} }}=mathbf {f(x)} +Summe _{i=1}^{m}mathbf {g} _{ich}(mathbf {x} )u_{ich}} has a differentiable control-Lyapunov function if and only if it admits a regular stabilizing feedback u(x), that is a locally Lipschitz function on Rn{0}.[1] The original 1983 proof by Zvi Artstein proceeds by a nonconstructive argument. Im 1989 Eduardo D. Sontag provided a constructive version of this theorem explicitly exhibiting the feedback.[2][3] See also Analysis and control of nonlinear systems Control-Lyapunov function References ^ Artstein, Zvi (1983). "Stabilization with relaxed controls". Nonlinear Analysis: Theorie, Methods & Applications. 7 (11): 1163–1173. doi:10.1016/0362-546X(83)90049-4. ^ Sontag, Eduardo D. A Universal Construction Of Artstein's Theorem On Nonlinear Stabilization ^ Sontag, Eduardo D. (1999), "Stability and stabilization: discontinuities and the effect of disturbances", in Clarke, F. H.; Stern, R. J.; Sabidussi, G. (Hrsg.), Nonlinear Analysis, Differential Equations and Control, Springer Netherlands, pp. 551–598, arXiv:math/9902026, doi:10.1007/978-94-011-4560-2_10, ISBN 9780792356660 This applied mathematics-related article is a stub. Sie können Wikipedia helfen, indem Sie es erweitern.
Kategorien: Control theoryTheorems in dynamical systemsApplied mathematics stubs
Wenn Sie andere ähnliche Artikel wissen möchten Artsteins Theorem Sie können die Kategorie besuchen Angewandte Mathematik-Stubs.
Hinterlasse eine Antwort