# Artstein's theorem

Artstein's theorem Artstein's theorem states that a nonlinear dynamical system in the control-affine form {displaystyle {dot {mathbf {x} }}=mathbf {f(x)} +sum _{i=1}^{m}mathbf {g} _{i}(mathbf {x} )u_{i}} has a differentiable control-Lyapunov function if and only if it admits a regular stabilizing feedback u(x), that is a locally Lipschitz function on Rn{0}.[1] The original 1983 proof by Zvi Artstein proceeds by a nonconstructive argument. In 1989 Eduardo D. Sontag provided a constructive version of this theorem explicitly exhibiting the feedback.[2][3] See also Analysis and control of nonlinear systems Control-Lyapunov function References ^ Artstein, Zvi (1983). "Stabilization with relaxed controls". Nonlinear Analysis: Theory, Methods & Applications. 7 (11): 1163–1173. doi:10.1016/0362-546X(83)90049-4. ^ Sontag, Eduardo D. A Universal Construction Of Artstein's Theorem On Nonlinear Stabilization ^ Sontag, Eduardo D. (1999), "Stability and stabilization: discontinuities and the effect of disturbances", in Clarke, F. H.; Stern, R. J.; Sabidussi, G. (eds.), Nonlinear Analysis, Differential Equations and Control, Springer Netherlands, pp. 551–598, arXiv:math/9902026, doi:10.1007/978-94-011-4560-2_10, ISBN 9780792356660 This applied mathematics-related article is a stub. You can help Wikipedia by expanding it.

Categories: Control theoryTheorems in dynamical systemsApplied mathematics stubs

Si quieres conocer otros artículos parecidos a Artstein's theorem puedes visitar la categoría Applied mathematics stubs.

Subir

Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información