# Flächensatz (konforme Abbildung)

Flächensatz (konforme Abbildung) In the mathematical theory of conformal mappings, the area theorem gives an inequality satisfied by the power series coefficients of certain conformal mappings. The theorem is called by that name, not because of its implications, but rather because the proof uses the notion of area.

Inhalt 1 Aussage 2 Nachweisen 3 Uses 4 References Statement Suppose that {Anzeigestil f} is analytic and injective in the punctured open unit disk {Anzeigestil mathbb {D} setminus {0}} and has the power series representation {Anzeigestil f(z)={frac {1}{z}}+Summe _{n=0}^{unendlich }a_{n}z^{n},qquad zin mathbb {D} setminus {0},} then the coefficients {Anzeigestil a_{n}} satisfy {Anzeigestil Summe _{n=0}^{unendlich }n|a_{n}|^{2}leq 1.} Proof The idea of the proof is to look at the area uncovered by the image of {Anzeigestil f} . Define for {displaystyle rin (0,1)} {displaystyle gamma _{r}(Theta ):= f(r,e^{-ittheta }),qquad theta in [0,2Pi ].} Dann {displaystyle gamma _{r}} is a simple closed curve in the plane. Lassen {displaystyle D_{r}} denote the unique bounded connected component of {Anzeigestil mathbb {C} setminus gamma [0,2Pi ]} . The existence and uniqueness of {displaystyle D_{r}} follows from Jordan's curve theorem.

Wenn {Anzeigestil D} is a domain in the plane whose boundary is a smooth simple closed curve {Anzeigestil Gamma } , dann {Anzeigestil mathrm {area} (D)=int _{Gamma }x,dy=-int _{Gamma }j,dx,,} unter der Vorraussetzung, dass {Anzeigestil Gamma } is positively oriented around {Anzeigestil D} . This follows easily, zum Beispiel, from Green's theorem. As we will soon see, {displaystyle gamma _{r}} is positively oriented around {displaystyle D_{r}} (and that is the reason for the minus sign in the definition of {displaystyle gamma _{r}} ). After applying the chain rule and the formula for {displaystyle gamma _{r}} , the above expressions for the area give {Anzeigestil mathrm {area} (D_{r})=int _{0}^{2Pi }Re {plötzlich (}f(re^{-ittheta }){größer )},Ich bin {plötzlich (}-ich,r,e^{-ittheta },f'(re^{-ittheta }){größer )},dtheta =-int _{0}^{2Pi }Ich bin {plötzlich (}f(re^{-ittheta }){größer )},Re {plötzlich (}-ich,r,e^{-ittheta },f'(re^{-ittheta }){größer )}Theta .} Deswegen, the area of {displaystyle D_{r}} also equals to the average of the two expressions on the right hand side. After simplification, this yields {Anzeigestil mathrm {area} (D_{r})=-{frac {1}{2}},Re int _{0}^{2Pi }f(r,e^{-ittheta }),{überstreichen {r,e^{-ittheta },f'(r,e^{-ittheta })}},Theta ,} wo {Anzeigestil {überstreichen {z}}} denotes complex conjugation. We set {Anzeigestil a_{-1}=1} and use the power series expansion for {Anzeigestil f} , bekommen {Anzeigestil mathrm {area} (D_{r})=-{frac {1}{2}},Re int _{0}^{2Pi }Summe _{n=-1}^{unendlich }Summe _{m=-1}^{unendlich }m,r^{n+m},a_{n},{überstreichen {a_{m}}},e^{ich,(m-n),Theta },Theta ,.} (Seit {Anzeigestil int _{0}^{2Pi }Summe _{n=-1}^{unendlich }Summe _{m=-1}^{unendlich }m,r^{n+m},|a_{n}|,|a_{m}|,Theta 0} , we may write the expression for the winding number of {displaystyle gamma _{s}} um {Anzeigestil z_{0}} , and verify that it is equal to {Anzeigestil 1} . Seit, {displaystyle gamma _{t}} does not pass through {Anzeigestil z_{0}} Wenn {displaystyle tneq r'} (wie {Anzeigestil f} ist injektiv), the invariance of the winding number under homotopy in the complement of {Anzeigestil z_{0}} implies that the winding number of {displaystyle gamma _{r}} um {Anzeigestil z_{0}} is also {Anzeigestil 1} . This implies that {Anzeigestil z_{0}in D_{r}} und das {displaystyle gamma _{r}} is positively oriented around {displaystyle D_{r}} , nach Bedarf.

Uses The inequalities satisfied by power series coefficients of conformal mappings were of considerable interest to mathematicians prior to the solution of the Bieberbach conjecture. The area theorem is a central tool in this context. Darüber hinaus, the area theorem is often used in order to prove the Koebe 1/4 Satz, which is very useful in the study of the geometry of conformal mappings.

References Rudin, Walter (1987), Echte und komplexe Analyse (3Dr. Ed.), New York: McGraw-Hill Book Co., ISBN 978-0-07-054234-1, HERR 0924157, OCLC 13093736 Kategorien: Theoreme in der komplexen Analysis

Wenn Sie andere ähnliche Artikel wissen möchten Flächensatz (konforme Abbildung) Sie können die Kategorie besuchen Theoreme in der komplexen Analysis.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen