Théorème d'Appell-Humbert

En mathématiques, the Appell–Humbert theorem describes the line bundles on a complex torus or complex abelian variety. It was proved for 2-dimensional tori by Appell (1891) and Humbert (1893), and in general by Lefschetz (1921)

Théorème d'Appell-Humbert

Jump to navigation
Jump to search

Describes the line bundles on a complex torus or complex abelian variety

Dans mathématiques, la Théorème d'Appell-Humbert describes the line bundles on a complex torus or complex abelian variety.
It was proved for 2-dimensional tori by Appell (1891) et Humbert (1893), and in general by Lefschetz (1921)

Déclaration[]

Supposer que

J {style d'affichage T}

"T" is a complex torus given by

V / Λ {displaystyle V/Lambda }

"{displaystyle

Λ {style d'affichage Lambda }

"Lambda is a lattice in a complex vector space

V {style d'affichage V}

"V". Si

H {style d'affichage H}

"H" is a Hermitian form on

V {style d'affichage V}

"V" whose imaginary part

E = Je suis ( H ) {style d'affichage E={texte{Je suis}}(H)}

"{style is integral on

Λ × Λ {displaystyle Lambda times Lambda }

"{displaystyle, et

un {style d'affichage alpha }

"alpha is a map from

Λ {style d'affichage Lambda }

"Lambda to the unit circle

tu ( 1 ) = { z C : | z | = 1 } {style d'affichage U(1)={zin mathbb {C} :|z|=1}}

"{style, called a semi-character, tel que

un ( tu + v ) = e je Pi E ( tu , v ) un ( tu ) un ( v )   {style d'affichage alpha (u+v)=e^{ipi E(tu,v)}alpha (tu)alpha (v) }

"alpha

alors

un ( tu ) e Pi H ( z , tu ) + H ( tu , tu ) Pi / 2   {style d'affichage alpha (tu)e ^{pi H(z,tu)+H(tu,tu)pi /2} }

"alpha

est un 1-cocycle de

Λ {style d'affichage Lambda }

"Lambda defining a line bundle on

J {style d'affichage T}

"T". For the trivial Hermitian form, this just reduces to a character. Note that the space of character morphisms is isomorphic with a real torus

Hom Ab ( Λ , tu ( 1 ) ) R 2 n / Z 2 n {style d'affichage {texte{Hom}}_{textbf {Ab}}(Lambda ,tu(1))cong mathbb {R} ^{2n}/mathbb {Z} ^{2n}}

"{style

si

Λ Z 2 n {displaystyle Lambda cong mathbb {Z} ^{2n}}

"{displaystyle since any such character factors through

R {style d'affichage mathbb {R} }

"mathbb composed with the exponential map. C'est-à-dire, a character is a map of the form

exp ( 2 Pi je je , ) {style d'affichage {texte{exp}}(2pi ilangle l^{*},-hochet )}

"{style

for some covector

je V {displaystyle l^{*}in V^{*}}

"{displaystyle. The periodicity of

exp ( 2 Pi je F ( X ) ) {style d'affichage {texte{exp}}(2pi if(X))}

"{style for a linear

F ( X ) {style d'affichage f(X)}

"f(X)" gives the isomorphism of the character group with the real torus given above. En réalité, this torus can be equipped with a complex structure, giving the dual complex torus.

Explicitement, a line bundle on

J = V / Λ {displaystyle T=V/Lambda }

"{displaystyle may be constructed by descent from a line bundle on

V {style d'affichage V}

"V" (which is necessarily trivial) et un descent data, namely a compatible collection of isomorphisms

tu O V O V {displaystyle u^{*}{mathématique {O}}_{V}à {mathématique {O}}_{V}}

"{displaystyle, one for each

tu tu {displaystyle uin U}

"u. Such isomorphisms may be presented as nonvanishing holomorphic functions on

V {style d'affichage V}

"V", and for each

tu {style d'affichage u}

"u" the expression above is a corresponding holomorphic function.

The Appell–Humbert theorem (Mumford 2008) says that every line bundle on

J {style d'affichage T}

"T" can be constructed like this for a unique choice of

H {style d'affichage H}

"H" et

un {style d'affichage alpha }

"alpha satisfying the conditions above.

Ample line bundles[]

Lefschetz proved that the line bundle

L {displaystyle L}

"L", associated to the Hermitian form

H {style d'affichage H}

"H" is ample if and only if

H {style d'affichage H}

"H" is positive definite, and in this case

L 3 {displaystyle L^{parfois 3}}

"{displaystyle is very ample. A consequence is that the complex torus is algebraic if and only if there is a positive definite Hermitian form whose imaginary part is integral on

Λ × Λ {displaystyle Lambda times Lambda }

"{displaystyle

Voir également[]

Références[]

  • Appell, P. (1891), "Sur les functiones périodiques de deux variables", Journal de Mathématiques Pures et Appliquées, Série IV, 7: 157–219

  • Humbert, g. (1893), "Théorie générale des surfaces hyperelliptiques", Journal de Mathématiques Pures et Appliquées, Série IV, 9: 29–170, 361–475
  • Lefschetz, Solomon (1921), "On Certain Numerical Invariants of Algebraic Varieties with Application to Abelian Varieties", Transactions de l'American Mathematical Society, Providence, R.I.: Société mathématique américaine, 22 (3): 327–406, est ce que je:10.2307/1988897, ISSN 0002-9947, JSTOR 1988897
  • Lefschetz, Solomon (1921), "On Certain Numerical Invariants of Algebraic Varieties with Application to Abelian Varieties", Transactions de l'American Mathematical Society, Providence, R.I.: Société mathématique américaine, 22 (4): 407–482, est ce que je:10.2307/1988964, ISSN 0002-9947, JSTOR 1988964
  • Mumford, David (2008) [1970], Variétés abéliennes, Institut Tata d'études de recherche fondamentale en mathématiques, vol. 5, Providence, R.I.: Société mathématique américaine, ISBN 978-81-85931-86-9, M 0282985, OCLC 138290


Si vous voulez connaître d'autres articles similaires à Théorème d'Appell-Humbert vous pouvez visiter la catégorie Variétés abéliennes.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations