Appell–Humbert theorem

In Mathematik, the Appell–Humbert theorem describes the line bundles on a complex torus or complex abelian variety. It was proved for 2-dimensional tori by Appell (1891) and Humbert (1893), and in general by Lefschetz (1921)

Appell–Humbert theorem

Jump to navigation
Jump to search

Describes the line bundles on a complex torus or complex abelian variety

Im Mathematik, das Appell–Humbert theorem describes the line bundles on a complex torus or complex abelian variety.
It was proved for 2-dimensional tori by Appell (1891) und Humbert (1893), and in general by Lefschetz (1921)

Aussage[]

Nehme an, dass

T {Anzeigestil T}

"T" is a complex torus given by

v / Λ {displaystyle V/Lambda }

"{displaystyle wo

Λ {Anzeigestil Lambda }

"Lambda is a lattice in a complex vector space

v {Anzeigestil V}

"V". Wenn

H {Anzeigestil H}

"H" is a Hermitian form on

v {Anzeigestil V}

"V" whose imaginary part

E = Ich bin ( H ) {Anzeigestil E={Text{Ich bin}}(H)}

"{Anzeigestil is integral on

Λ × Λ {displaystyle Lambda times Lambda }

"{displaystyle, und

a {Anzeigestil alpha }

"alpha is a map from

Λ {Anzeigestil Lambda }

"Lambda to the unit circle

U ( 1 ) = { z C : | z | = 1 } {Anzeigestil U(1)={zin mathbb {C} :|z|=1}}

"{Anzeigestil, called a semi-character, so dass

a ( u + v ) = e ich Pi E ( u , v ) a ( u ) a ( v )   {Anzeigestil alpha (u+v)=e^{ipi E(u,v)}Alpha (u)Alpha (v) }

"alpha

dann

a ( u ) e Pi H ( z , u ) + H ( u , u ) Pi / 2   {Anzeigestil alpha (u)e^{pi H(z,u)+H(u,u)Pi /2} }

"alpha

ist ein 1-cocycle von

Λ {Anzeigestil Lambda }

"Lambda defining a line bundle on

T {Anzeigestil T}

"T". For the trivial Hermitian form, this just reduces to a character. Note that the space of character morphisms is isomorphic with a real torus

Hom Ab ( Λ , U ( 1 ) ) R 2 n / Z 2 n {Anzeigestil {Text{Hom}}_{textbf {Ab}}(Lambda ,U(1))cong mathbb {R} ^{2n}/mathbb {Z} ^{2n}}

"{Anzeigestil

wenn

Λ Z 2 n {displaystyle Lambda cong mathbb {Z} ^{2n}}

"{displaystyle since any such character factors through

R {Anzeigestil mathbb {R} }

"mathbb composed with the exponential map. Das ist, a character is a map of the form

exp ( 2 Pi ich l , ) {Anzeigestil {Text{exp}}(2pi ilangle l^{*},-Rassel )}

"{Anzeigestil

for some covector

l v {displaystyle l^{*}in V^{*}}

"{displaystyle. The periodicity of

exp ( 2 Pi ich f ( x ) ) {Anzeigestil {Text{exp}}(2pi if(x))}

"{Anzeigestil for a linear

f ( x ) {Anzeigestil f(x)}

"f(x)" gives the isomorphism of the character group with the real torus given above. In der Tat, this torus can be equipped with a complex structure, giving the dual complex torus.

Ausdrücklich, a line bundle on

T = v / Λ {displaystyle T=V/Lambda }

"{displaystyle may be constructed by descent from a line bundle on

v {Anzeigestil V}

"V" (which is necessarily trivial) und ein descent data, namely a compatible collection of isomorphisms

u Ö v Ö v {Anzeigestil u^{*}{mathematisch {Ö}}_{v}zu {mathematisch {Ö}}_{v}}

"{Anzeigestil, one for each

u U {displaystyle uin U}

"u. Such isomorphisms may be presented as nonvanishing holomorphic functions on

v {Anzeigestil V}

"V", and for each

u {Anzeigestil u}

"u" the expression above is a corresponding holomorphic function.

The Appell–Humbert theorem (Mumford 2008) says that every line bundle on

T {Anzeigestil T}

"T" can be constructed like this for a unique choice of

H {Anzeigestil H}

"H" und

a {Anzeigestil alpha }

"alpha satisfying the conditions above.

Ample line bundles[]

Lefschetz proved that the line bundle

L {Anzeigestil L}

"L", associated to the Hermitian form

H {Anzeigestil H}

"H" is ample if and only if

H {Anzeigestil H}

"H" is positive definite, and in this case

L 3 {Anzeigestil L^{omal 3}}

"{Anzeigestil is very ample. A consequence is that the complex torus is algebraic if and only if there is a positive definite Hermitian form whose imaginary part is integral on

Λ × Λ {displaystyle Lambda times Lambda }

"{displaystyle

Siehe auch[]

Verweise[]

  • Appell, P. (1891), "Sur les functiones périodiques de deux variables", Journal de Mathématiques Pures et Appliquées, Série IV, 7: 157–219

  • Humbert, G. (1893), "Théorie générale des surfaces hyperelliptiques", Journal de Mathématiques Pures et Appliquées, Série IV, 9: 29–170, 361–475
  • Lefschetz, Solomon (1921), "On Certain Numerical Invariants of Algebraic Varieties with Application to Abelian Varieties", Transaktionen der American Mathematical Society, Vorsehung, RI: Amerikanische Mathematische Gesellschaft, 22 (3): 327–406, doi:10.2307/1988897, ISSN 0002-9947, JSTOR 1988897
  • Lefschetz, Solomon (1921), "On Certain Numerical Invariants of Algebraic Varieties with Application to Abelian Varieties", Transaktionen der American Mathematical Society, Vorsehung, RI: Amerikanische Mathematische Gesellschaft, 22 (4): 407–482, doi:10.2307/1988964, ISSN 0002-9947, JSTOR 1988964
  • Mumford, David (2008) [1970], Abelische Sorten, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Vorsehung, RI: Amerikanische Mathematische Gesellschaft, ISBN 978-81-85931-86-9, HERR 0282985, OCLC 138290


Wenn Sie andere ähnliche Artikel wissen möchten Appell–Humbert theorem Sie können die Kategorie besuchen Abelische Sorten.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen