Appell–Humbert theorem

In mathematics, the Appell–Humbert theorem describes the line bundles on a complex torus or complex abelian variety. It was proved for 2-dimensional tori by Appell (1891) and Humbert (1893), and in general by Lefschetz (1921)

Appell–Humbert theorem

Jump to navigation
Jump to search

Describes the line bundles on a complex torus or complex abelian variety

In mathematics, the Appell–Humbert theorem describes the line bundles on a complex torus or complex abelian variety.
It was proved for 2-dimensional tori by Appell (1891) and Humbert (1893), and in general by Lefschetz (1921)

Statement[]

Suppose that

T {displaystyle T}

"T" is a complex torus given by

V / Λ {displaystyle V/Lambda }

"{displaystyle where

Λ {displaystyle Lambda }

"Lambda is a lattice in a complex vector space

V {displaystyle V}

"V". If

H {displaystyle H}

"H" is a Hermitian form on

V {displaystyle V}

"V" whose imaginary part

E = Im ( H ) {displaystyle E={text{Im}}(H)}

"{displaystyle is integral on

Λ × Λ {displaystyle Lambda times Lambda }

"{displaystyle, and

α {displaystyle alpha }

"alpha is a map from

Λ {displaystyle Lambda }

"Lambda to the unit circle

U ( 1 ) = { z C : | z | = 1 } {displaystyle U(1)={zin mathbb {C} :|z|=1}}

"{displaystyle, called a semi-character, such that

α ( u + v ) = e i π E ( u , v ) α ( u ) α ( v )   {displaystyle alpha (u+v)=e^{ipi E(u,v)}alpha (u)alpha (v) }

"alpha

then

α ( u ) e π H ( z , u ) + H ( u , u ) π / 2   {displaystyle alpha (u)e^{pi H(z,u)+H(u,u)pi /2} }

"alpha

is a 1-cocycle of

Λ {displaystyle Lambda }

"Lambda defining a line bundle on

T {displaystyle T}

"T". For the trivial Hermitian form, this just reduces to a character. Note that the space of character morphisms is isomorphic with a real torus

Hom Ab ( Λ , U ( 1 ) ) R 2 n / Z 2 n {displaystyle {text{Hom}}_{textbf {Ab}}(Lambda ,U(1))cong mathbb {R} ^{2n}/mathbb {Z} ^{2n}}

"{displaystyle

if

Λ Z 2 n {displaystyle Lambda cong mathbb {Z} ^{2n}}

"{displaystyle since any such character factors through

R {displaystyle mathbb {R} }

"mathbb composed with the exponential map. That is, a character is a map of the form

exp ( 2 π i l , ) {displaystyle {text{exp}}(2pi ilangle l^{*},-rangle )}

"{displaystyle

for some covector

l V {displaystyle l^{*}in V^{*}}

"{displaystyle. The periodicity of

exp ( 2 π i f ( x ) ) {displaystyle {text{exp}}(2pi if(x))}

"{displaystyle for a linear

f ( x ) {displaystyle f(x)}

"f(x)" gives the isomorphism of the character group with the real torus given above. In fact, this torus can be equipped with a complex structure, giving the dual complex torus.

Explicitly, a line bundle on

T = V / Λ {displaystyle T=V/Lambda }

"{displaystyle may be constructed by descent from a line bundle on

V {displaystyle V}

"V" (which is necessarily trivial) and a descent data, namely a compatible collection of isomorphisms

u O V O V {displaystyle u^{*}{mathcal {O}}_{V}to {mathcal {O}}_{V}}

"{displaystyle, one for each

u U {displaystyle uin U}

"u. Such isomorphisms may be presented as nonvanishing holomorphic functions on

V {displaystyle V}

"V", and for each

u {displaystyle u}

"u" the expression above is a corresponding holomorphic function.

The Appell–Humbert theorem (Mumford 2008) says that every line bundle on

T {displaystyle T}

"T" can be constructed like this for a unique choice of

H {displaystyle H}

"H" and

α {displaystyle alpha }

"alpha satisfying the conditions above.

Ample line bundles[]

Lefschetz proved that the line bundle

L {displaystyle L}

"L", associated to the Hermitian form

H {displaystyle H}

"H" is ample if and only if

H {displaystyle H}

"H" is positive definite, and in this case

L 3 {displaystyle L^{otimes 3}}

"{displaystyle is very ample. A consequence is that the complex torus is algebraic if and only if there is a positive definite Hermitian form whose imaginary part is integral on

Λ × Λ {displaystyle Lambda times Lambda }

"{displaystyle

See also[]

References[]

  • Appell, P. (1891), "Sur les functiones périodiques de deux variables", Journal de Mathématiques Pures et Appliquées, Série IV, 7: 157–219

  • Humbert, G. (1893), "Théorie générale des surfaces hyperelliptiques", Journal de Mathématiques Pures et Appliquées, Série IV, 9: 29–170, 361–475
  • Lefschetz, Solomon (1921), "On Certain Numerical Invariants of Algebraic Varieties with Application to Abelian Varieties", Transactions of the American Mathematical Society, Providence, R.I.: American Mathematical Society, 22 (3): 327–406, doi:10.2307/1988897, ISSN 0002-9947, JSTOR 1988897
  • Lefschetz, Solomon (1921), "On Certain Numerical Invariants of Algebraic Varieties with Application to Abelian Varieties", Transactions of the American Mathematical Society, Providence, R.I.: American Mathematical Society, 22 (4): 407–482, doi:10.2307/1988964, ISSN 0002-9947, JSTOR 1988964
  • Mumford, David (2008) [1970], Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Providence, R.I.: American Mathematical Society, ISBN 978-81-85931-86-9, MR 0282985, OCLC 138290


Si quieres conocer otros artículos parecidos a Appell–Humbert theorem puedes visitar la categoría Abelian varieties.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

Subir

Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información