# Apollonius's theorem En géométrie, Apollonius's theorem is a theorem relating the length of a median of a triangle to the lengths of its sides. It states that "the sum of the squares of any two sides of any triangle equals twice the square on half the third side, together with twice the square on the median bisecting the third side".

# Apollonius's theorem

Dans géométrie, Apollonius's theorem est un théorème relating the length of a median of a Triangle to the lengths of its sides.
It states that "the sum of the squares of any two sides of any triangle equals twice the square on half the third side, together with twice the square on the median bisecting the third side".

Spécifiquement, in any triangle

$"{displaystyle$ si

$"{displaystyle$ is a median, alors

$"{displaystyle$=2left(|UN D|^{2}+|BD|^{2}droit).} It is a special case de Stewart's theorem. For an isosceles triangle avec

$"{displaystyle$ the median

$"{displaystyle$ is perpendicular to

$"{displaystyle$ and the theorem reduces to the Pythagorean theorem for triangle

$"{displaystyle$displaystyle ADB} (or triangle

$"{displaystyle$displaystyle ADC} ). From the fact that the diagonals of a parallelogram bisect each other, the theorem is equivalent to the parallelogram law.

The theorem is named for the ancient Greek mathematician Apollonius of Perga.

Índice

## Preuve[]

The theorem can be proved as a special case of Stewart's theorem, or can be proved using vectors (voir parallelogram law). The following is an independent proof using the law of cosines.

Let the triangle have sides

$"{displaystyle$ with a median

$"{displaystyle$ drawn to side

$"{displaystyle$displaystyle a.} Laisser

$"{displaystyle$ be the length of the segments of

$"{displaystyle$ formed by the median, alors

$"{displaystyle$ is half of

$"{displaystyle$displaystyle a.} Let the angles formed between

$"{displaystyle$ et

$"{displaystyle$ be

$"{displaystyle$ et

$"{displaystyle$displaystyle theta ^{prime },} $"{displaystyle$ includes

$"{displaystyle$ et

$"{displaystyle$displaystyle theta ^{prime }} includes

$"{displaystyle$displaystyle c.} Alors

$"{displaystyle$displaystyle theta ^{prime }} is the supplement of

$"{displaystyle$ et

$"{displaystyle$displaystyle cos theta ^{prime }=-cos theta .} La law of cosines pour

$"{displaystyle$ et

$"{displaystyle$displaystyle theta ^{prime }} stipule que

$"{displaystyle$=m^{2}+d^{2}-2dmcos theta \c^{2}&=m^{2}+d^{2}-2dmcos theta '\&=m^{2}+d^{2}+2dmcos theta .,end{aligné}}} Add the first and third equations to obtain

$"{displaystyle$ comme demandé.

## Références[]

1. ^

Godfrey, Charles; Siddons, Arthur Warry (1908). Modern Geometry. University Press. p.20.

## Liens externes[]

Si vous voulez connaître d'autres articles similaires à Apollonius's theorem vous pouvez visiter la catégorie Géométrie euclidienne.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations