Apollonius's theorem

En géométrie, Apollonius's theorem is a theorem relating the length of a median of a triangle to the lengths of its sides. It states that "the sum of the squares of any two sides of any triangle equals twice the square on half the third side, together with twice the square on the median bisecting the third side".

Apollonius's theorem

Jump to navigation
Jump to search

Relates the length of a median of a triangle to the lengths of its sides
This article is about the lengths of the sides of a triangle. For his work on circles, voir Problem of Apollonius.
""

green/blue areas = red area

""

Pythagoras as a special case:
zone verte = zone rouge

Dans géométrie, Apollonius's theorem est un théorème relating the length of a median of a Triangle to the lengths of its sides.
It states that "the sum of the squares of any two sides of any triangle equals twice the square on half the third side, together with twice the square on the median bisecting the third side".

Spécifiquement, in any triangle

UN B C , {style d'affichage ABC,}

"{style si

UN {style d'affichage AD}

"AD" is a median, alors

| UN B | 2 + | UN C | 2 = 2 ( | UN | 2 + | B | 2 ) . {style d'affichage |UN B|^{2}+|CA|^{2}=2left(|UN D|^{2}+|BD|^{2}droit).}

"{style

It is a special case de Stewart's theorem. For an isosceles triangle avec

| UN B | = | UN C | , {style d'affichage |UN B|=|CA|,}

"{style the median

UN {style d'affichage AD}

"AD" is perpendicular to

B C {style d'affichage BC}

"BC" and the theorem reduces to the Pythagorean theorem for triangle

UN B {displaystyle ADB}

"{displaystyle (or triangle

UN C {displaystyle ADC}

"{displaystyle). From the fact that the diagonals of a parallelogram bisect each other, the theorem is equivalent to the parallelogram law.

The theorem is named for the ancient Greek mathematician Apollonius of Perga.

Preuve[]

""

Proof of Apollonius's theorem

The theorem can be proved as a special case of Stewart's theorem, or can be proved using vectors (voir parallelogram law). The following is an independent proof using the law of cosines.[1]

Let the triangle have sides

un , b , c {style d'affichage a,b,c}

"a,b,c" with a median

{displaystyle d}

"d" drawn to side

un . {displaystyle a.}

"a." Laisser

m {style d'affichage m}

"m" be the length of the segments of

un {style d'affichage a}

"a" formed by the median, alors

m {style d'affichage m}

"m" is half of

un . {displaystyle a.}

"a." Let the angles formed between

un {style d'affichage a}

"a" et

{displaystyle d}

"d" be

je {thêta de style d'affichage }

"theta et

je , {displaystyle theta ^{prime },}

"{displaystyle

je {thêta de style d'affichage }

"theta includes

b {style d'affichage b}

"b" et

je {displaystyle theta ^{prime }}

"theta^{prime}" includes

c . {displaystyle c.}

"c." Alors

je {displaystyle theta ^{prime }}

"theta^{prime}" is the supplement of

je {thêta de style d'affichage }

"theta et

parce que je = parce que je . {displaystyle cos theta ^{prime }=-cos theta .}

"{displaystyle La law of cosines pour

je {thêta de style d'affichage }

"theta et

je {displaystyle theta ^{prime }}

"theta^{prime}" stipule que

b 2 = m 2 + 2 2 m parce que je c 2 = m 2 + 2 2 m parce que je = m 2 + 2 + 2 m parce que je . {style d'affichage {commencer{aligné}b^{2}&=m^{2}+d^{2}-2dmcos theta \c^{2}&=m^{2}+d^{2}-2dmcos theta '\&=m^{2}+d^{2}+2dmcos theta .,end{aligné}}}

"{style

Add the first and third equations to obtain

b 2 + c 2 = 2 ( m 2 + 2 ) {style d'affichage b^{2}+c^{2}=2(moi ^{2}+d^{2})}

"{style

comme demandé.

Voir également[]

Références[]

  1. ^

    Godfrey, Charles; Siddons, Arthur Warry (1908). Modern Geometry. University Press. p.20.

Liens externes[]


Si vous voulez connaître d'autres articles similaires à Apollonius's theorem vous pouvez visiter la catégorie Géométrie euclidienne.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations