Apéry's theorem

En mathématiques, Apéry's theorem is a result in number theory that states the Apéry's constant ζ(3) is irrational. C'est-à-dire, le nombre

Apéry's theorem

Aller à la navigation
Aller à la recherche

Sum of the inverses of the positive integers cubed is irrational

Dans mathématiques, Apéry's theorem is a result in number theory that states the Apéry's constant ζ(3) est irrational. C'est-à-dire, le nombre

ζ ( 3 ) = n = 1 1 n 3 = 1 1 3 + 1 2 3 + 1 3 3 + = 1.2020569 {displaystyle zeta (3)=somme _{n=1}^{infime }{frac {1}{n^{3}}}={frac {1}{1^{3}}}+{frac {1}{2^{3}}}+{frac {1}{3^{3}}}+ldots =1.2020569ldots }


cannot be written as a fraction p/qp et q sommes integers. Le théorème porte le nom Roger Apéry.

The special values of the Riemann zeta function à même integers 2n (n > 0) can be shown in terms of Bernoulli numbers to be irrational, while it remains open whether the function's values are in general rational or not at the odd integers 2n + 1 (n > 1) (though they are conjectured to be irrational).


Euler proved that if n is a positive integer then

1 1 2 n + 1 2 2 n + 1 3 2 n + 1 4 2 n + = p q Pi 2 n {style d'affichage {frac {1}{1^{2n}}}+{frac {1}{2^{2n}}}+{frac {1}{3^{2n}}}+{frac {1}{4^{2n}}}+ldots ={frac {p}{q}}pi ^{2n}}


for some rational number p/q. Spécifiquement, writing the infinite series on the left as ζ(2n) he showed

ζ ( 2 n ) = ( 1 ) n + 1 B 2 n ( 2 Pi ) 2 n 2 ( 2 n ) ! {displaystyle zeta (2n)=(-1)^{n+1}{frac {B_{2n}(2pi )^{2n}}{2(2n)!}}}


où le Bn are the rational Bernoulli numbers. Once it was proved that πn is always irrational this showed that ζ(2n) is irrational for all positive integers n.

No such representation in terms of π is known for the so-called zeta constants for odd arguments, the values ζ(2n + 1) for positive integers n. It has been conjectured that the ratios of these quantities

ζ ( 2 n + 1 ) Pi 2 n + 1 , {style d'affichage {frac {zêta (2n+1)}{pi ^{2n+1}}},}


sommes transcendental for every integer n ≥ 1.[1]

Because of this, no proof could be found to show that the zeta constants with odd arguments were irrational, even though they were (and still are) all believed to be transcendental. Cependant, in June 1978, Roger Apéry gave a talk titled "Sur l'irrationalité de ζ(3)." During the course of the talk he outlined proofs that ζ(3) and ζ(2) were irrational, the latter using methods simplified from those used to tackle the former rather than relying on the expression in terms of π. Due to the wholly unexpected nature of the proof and Apéry's blasé and very sketchy approach to the subject, many of the mathematicians in the audience dismissed the proof as flawed. Cependant Henri Cohen, Hendrik Lenstra, et Alfred van der Poorten suspected Apéry was on to something and set out to confirm his proof. Two months later they finished verification of Apéry's proof, and on August 18 Cohen delivered a lecture giving full details of the proof. After the lecture Apéry himself took to the podium to explain the source of some of his ideas.[2]

Apéry's proof[]

Apéry's original proof[3][4] was based on the well known irrationality criterion from Peter Gustav Lejeune Dirichlet, which states that a number ξ is irrational if there are infinitely many coprime integers p et q tel que

| X p q | < c q 1 + {style d'affichage à gauche|xii -{frac {p}{q}}droit|<{frac {c}{q ^{1+delta }}}}


for some fixed c, ré > 0.

The starting point for Apéry was the series representation of ζ(3) comme

ζ ( 3 ) = 5 2 n = 1 ( 1 ) n 1 n 3 ( 2 n n ) . {displaystyle zeta (3)={frac {5}{2}}somme _{n=1}^{infime }{frac {(-1)^{n-1}}{n^{3}{certains d'entre eux {2n}{n}}}}.}


Grosso modo, Apéry then defined a séquence cn,k which converges to ζ(3) about as fast as the above series, spécifiquement

c n , k = m = 1 n 1 m 3 + m = 1 k ( 1 ) m 1 2 m 3 ( n m ) ( n + m m ) . {displaystyle c_{n,k}=somme _{m=1}^{n}{frac {1}{moi ^{3}}}+somme _{m=1}^{k}{frac {(-1)^{m-1}}{2moi ^{3}{certains d'entre eux {n}{m}}{certains d'entre eux {n+m}{m}}}}.}


He then defined two more sequences unn et bn ce, roughly, have the quotient cn,k.

These sequences were

un n = k = 0 n c n , k ( n k ) 2 ( n + k k ) 2 {style d'affichage a_{n}=somme _{k=0}^{n}c_{n,k}{certains d'entre eux {n}{k}}^{2}{certains d'entre eux {n+k}{k}}^{2}}



b n = k = 0 n ( n k ) 2 ( n + k k ) 2 . {style d'affichage b_{n}=somme _{k=0}^{n}{certains d'entre eux {n}{k}}^{2}{certains d'entre eux {n+k}{k}}^{2}.}


La séquence unn/bn converges to ζ(3) fast enough to apply the criterion, but unfortunately unn is not an integer after n = 2.

Néanmoins, Apéry showed that even after multiplying unn et bn by a suitable integer to cure this problem the convergence was still fast enough to guarantee irrationality.

Later proofs[]

Within a year of Apéry's result an alternative proof was found by Frits Beukers,[5] who replaced Apéry's series with integrals involving the shifted Legendre polynomials

P n ~ ( X ) {style d'affichage {tilde {P_{n}}}(X)}

"{tilde. Using a representation that would later be generalized to Hadjicostas's formula, Beukers showed that

0 1 0 1 Journal ( X y ) 1 X y P n ~ ( X ) P n ~ ( y ) X y = UN n + B n ζ ( 3 ) lcm [ 1 , , n ] 3 {style d'affichage entier _{0}^{1}entier _{0}^{1}{frac {-Journal(xy)}{1-xy}}{tilde {P_{n}}}(X){tilde {P_{n}}}(y)dxdy={frac {UN_{n}+B_{n}zêta (3)}{nom de l'opérateur {lcm} la gauche[1,ldots ,pas vrai]^{3}}}}


for some integers UNn et Bn (séquences OEISA171484 et OEISA171485). Using partial integration and the assumption that ζ(3) was rational and equal to un/b, Beukers eventually derived the inequality

0 < 1 b | UN n + B n ζ ( 3 ) | 4 ( 4 5 ) n {style d'affichage 0<{frac {1}{b}}gauche|UN_{n}+B_{n}zêta (3)droit|leq 4left({frac {4}{5}}droit)^{n}}


qui est un contradiction since the right-most expression tends to zero as n → ∞, and so must eventually fall below 1/b.

A more recent proof by Wadim Zudilin is more reminiscent of Apéry's original proof,[6] and also has similarities to a fourth proof by Yuri Nesterenko.[7] These later proofs again derive a contradiction from the assumption that ζ(3) is rational by constructing sequences that tend to zero but are bounded below by some positive constant.

They are somewhat less transparent than the earlier proofs, since they rely upon hypergeometric series.

Higher zeta constants[]

Voir également Particular values of the Riemann zeta function § Odd positive integers.

Apéry and Beukers could simplify their proofs to work on ζ(2) as well thanks to the series representation

ζ ( 2 ) = 3 n = 1 1 n 2 ( 2 n n ) . {displaystyle zeta (2)=3sum _{n=1}^{infime }{frac {1}{n^{2}{certains d'entre eux {2n}{n}}}}.}


Due to the success of Apéry's method a search was undertaken for a number ξ5 with the property that

ζ ( 5 ) = X 5 n = 1 ( 1 ) n 1 n 5 ( 2 n n ) . {displaystyle zeta (5)=xi _{5}somme _{n=1}^{infime }{frac {(-1)^{n-1}}{n^{5}{certains d'entre eux {2n}{n}}}}.}


If such a ξ5 were found then the methods used to prove Apéry's theorem would be expected to work on a proof that ζ(5) is irrational.

Malheureusement, extensive computer searching[8] has failed to find such a constant, and in fact it is now known that if ξ5 exists and if it is an algebraic number of degree at most 25, then the coefficients in its minimal polynomial must be enormous, au moins 10383, so extending Apéry's proof to work on the higher odd zeta constants does not seem likely to work.

Despite this, many mathematicians working in this area expect a breakthrough sometime soon.[lorsque?][9] En effet, recent work by Wadim Zudilin and Tanguy Rivoal has shown that infinitely many of the numbers ζ(2n + 1) must be irrational,[10] and even that at least one of the numbers ζ(5), ζ(7), ζ(9), and ζ(11) must be irrational.[11] Their work uses linear forms in values of the zeta function and estimates upon them to bound the dimension of a vector space spanned by values of the zeta function at odd integers. Hopes that Zudilin could cut his list further to just one number did not materialise, but work on this problem is still an active area of research. Higher zeta constants have application to physics: they describe correlation functions in quantum spin chains.[12]


  1. ^

    Kohnen, Winfried (1989). "Transcendence conjectures about periods of modular forms and rational structures on spaces of modular forms". Proc. Indian Acad. SCI. Math. SCI. 99 (3): 231–233. est ce que je:10.1007/BF02864395. S2CID 121346325.

  2. ^ UN. van der Poorten (1979). "A proof that Euler missed..." (PDF). The Mathematical Intelligencer. 1 (4): 195–203. est ce que je:10.1007/BF03028234. S2CID 121589323.
  3. ^ Apéry, R. (1979). "Irrationalité de ζ(2) et ζ(3)". Astérisque. 61: 11–13.
  4. ^ Apéry, R. (1981), "Interpolation de fractions continues et irrationalité de certaines constantes", Bulletin de la section des sciences du C.T.H.S III, pp. 37–53
  5. ^ F. Beukers (1979). "A note on the irrationality of ζ(2) and ζ(3)". Bulletin de la London Mathematical Society. 11 (3): 268–272. est ce que je:10.1112/blms/11.3.268.
  6. ^ Zudilin, O. (2002). "An Elementary Proof of Apéry's Theorem". arXiv:math/0202159.
  7. ^ Ю. À. Нестеренко (1996). Некоторые замечания о ζ(3). Matem. Заметки (en russe). 59 (6): 865–880. est ce que je:10.4213/mzm1785. English translation: Yu. V. Nesterenko (1996). "A Few Remarks on ζ(3)". Math. Remarques. 59 (6): 625–636. est ce que je:10.1007/BF02307212. S2CID 117487836.
  8. ^ ré. H. Bailey, J. Borwein, N. Calkin, R. Girgensohn, R. Luc, et V. Moll, Experimental Mathematics in Action, 2007.
  9. ^ Jorn Steuding (2005). Diophantine Analysis. Discrete Mathematics and Its Applications. Boca Ratón: Chapman & Hall/CRC. p. 280. ISBN 978-1-58488-482-8.
  10. ^ Rivoal, J. (2000). "La fonction zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs". Comptes Rendus de l'Académie des Sciences, Série I. 331: 267–270. arXiv:math/0008051. Code bib:2000CRASM.331..267R. est ce que je:10.1016/S0764-4442(00)01624-4. S2CID 119678120.
  11. ^ O. Zudilin (2001). "One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational". Russ. Math. Surv. 56 (4): 774–776. Code bib:2001RuMaS..56..774Z. est ce que je:10.1070/RM2001v056n04ABEH000427.
  12. ^ H. E. Boos; V. E. Korepin; Oui. Nishiyama; M. Shiroishi (2002). "Quantum Correlations and Number Theory". Journal de physique A. 35 (20): 4443–4452. arXiv:cond-mat/0202346. Code bib:2002JPhA...35.4443B. est ce que je:10.1088/0305-4470/35/20/305. S2CID 119143600.

Liens externes[]

Si vous voulez connaître d'autres articles similaires à Apéry's theorem vous pouvez visiter la catégorie Théorèmes en théorie des nombres.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations