Anne's theorem

Anne's theorem, named after the French mathematician Pierre-Leon Anne (1806–1850), is a statement from Euclidean geometry, which describes an equality of certain areas within a convex quadrilateral.

Anne's theorem

Jump to navigation
Jump to search

""

The sums of the areas of opposing triangles are equal, das ist
Bereich(BCL) + Bereich(DAL) = Area(LAB) + Bereich(DLC)

Anne's theorem, named after the French mathematician Pierre-Leon Anne (1806–1850), is a statement from Euklidische Geometrie, which describes an equality of certain areas within a convex quadrilateral.

Speziell, it states:

Let ABCD be a convex quadrilateral with diagonals AC and BD, that is not a parallelogram. Furthermore let E and F be the midpoints of the diagonals and L be an arbitrary point in the interior of ABCD. L forms four triangles with the edges of ABCD. If the two sums of areas of opposite triangles are equalBereich(BCL) + Bereich(DAL) =Bereich(LAB) + Bereich(DLC) ), then the point L is located on the Newton line, that is the line which connects E and F.

For a parallelogram the Newton line does not exist since both midpoints of the diagonals coincide with point of intersection of the diagonals. Moreover the area identity of the theorem holds in this case for any inner point of the quadrilateral.

The converse of Anne's theorem is true as well, that is for any point on the Newton line which is an inner point of the quadrilateral, the area identity holds.

Índice
  1. Verweise[]
  2. Externe Links[]

Verweise[]

  • Claudi Alsina, Roger B. Nelsen: Charming Proofs: A Journey Into Elegant Mathematics. MAA, 2010,

    ISBN 9780883853481, pp. 116–117 (online copy, p. 116, bei Google Books)

  • Ross Honsberger: More Mathematical Morsels. Cambridge University Press, 1991, ISBN 0883853140, pp. 174–175 online copy, p. 174, at Google Books)

Externe Links[]


Wenn Sie andere ähnliche Artikel wissen möchten Anne's theorem Sie können die Kategorie besuchen Theorems about quadrilaterals.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen