Ankeny–Artin–Chowla congruence

Ankeny–Artin–Chowla congruence (Redirected from Ankeny–Artin–Chowla theorem) Jump to navigation Jump to search In number theory, the Ankeny–Artin–Chowla congruence is a result published in 1953 by N. C. Ankeny, Emil Artin and S. Showla. It concerns the class number h of a real quadratic field of discriminant d > 0. If the fundamental unit of the field is {displaystyle varepsilon ={fratura {t+u{quadrado {d}}}{2}}} with integers t and u, it expresses in another form {estilo de exibição {fratura {ht}{você}}{pmod {p}};} for any prime number p > 2 that divides d. In case p > 3 it states that {estilo de exibição -2{mht over u}equiv sum _{0
Se você quiser conhecer outros artigos semelhantes a Ankeny–Artin–Chowla congruence você pode visitar a categoria Number theory stubs.
Deixe uma resposta