Ankeny–Artin–Chowla congruence

Ankeny–Artin–Chowla congruence (Redirected from Ankeny–Artin–Chowla theorem) Jump to navigation Jump to search In number theory, the Ankeny–Artin–Chowla congruence is a result published in 1953 by N. C. Ankeny, Emil Artin and S. Afficherla. It concerns the class number h of a real quadratic field of discriminant d > 0. If the fundamental unit of the field is {displaystyle varepsilon ={frac {t+u{sqrt {ré}}}{2}}} with integers t and u, it expresses in another form {style d'affichage {frac {ht}{tu}}{pmod {p}};} for any prime number p > 2 that divides d. In case p > 3 it states that {style d'affichage -2{mht over u}equiv sum _{0
Si vous voulez connaître d'autres articles similaires à Ankeny–Artin–Chowla congruence vous pouvez visiter la catégorie Number theory stubs.
Laisser un commentaire