Angle bisector theorem

Angle bisector theorem In this diagram, BD:DC = AB:CA.

Na geometria, the angle bisector theorem is concerned with the relative lengths of the two segments that a triangle's side is divided into by a line that bisects the opposite angle. It equates their relative lengths to the relative lengths of the other two sides of the triangle.

Conteúdo 1 Teorema 2 Provas 2.1 Prova 1 2.2 Prova 2 2.3 Prova 3 3 Exterior angle bisectors 4 História 5 Formulários 6 Referências 7 Leitura adicional 8 External links Theorem Consider a triangle ABC. Let the angle bisector of angle A intersect side BC at a point D between B and C. The angle bisector theorem states that the ratio of the length of the line segment BD to the length of segment CD is equal to the ratio of the length of side AB to the length of side AC: {estilo de exibição {fratura {|BD|}{|CD|}}={fratura {|AB|}{|CA|}},} e inversamente, if a point D on the side BC of triangle ABC divides BC in the same ratio as the sides AB and AC, then AD is the angle bisector of angle ∠ A.

The generalized angle bisector theorem states that if D lies on the line BC, então {estilo de exibição {fratura {|BD|}{|CD|}}={fratura {|AB|sin angle DAB}{|CA|sin angle DAC}}.} This reduces to the previous version if AD is the bisector of ∠ BAC. When D is external to the segment BC, directed line segments and directed angles must be used in the calculation.

The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof.

An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.

Proofs Proof 1 In the above diagram, use the law of sines on triangles ABD and ACD: {estilo de exibição {fratura {|AB|}{|BD|}}={fratura {sin angle ADB}{sin angle DAB}}} (1) {estilo de exibição {fratura {|CA|}{|CD|}}={fratura {sin angle ADC}{sin angle DAC}}} (2) Angles ∠ ADB and ∠ ADC form a linear pair, isso é, they are adjacent supplementary angles. Since supplementary angles have equal sines, {estilo de exibição {sin angle ADB}={sin angle ADC}.} Angles ∠ DAB and ∠ DAC are equal. Portanto, the right hand sides of equations (1) e (2) are equal, so their left hand sides must also be equal.

{estilo de exibição {fratura {|BD|}{|CD|}}={fratura {|AB|}{|CA|}},} which is the angle bisector theorem.

If angles ∠ DAB and ∠ DAC are unequal, equations (1) e (2) can be re-written as: {estilo de exibição {{fratura {|AB|}{|BD|}}sin angle DAB=sin angle ADB},} {estilo de exibição {{fratura {|CA|}{|CD|}}sin angle DAC=sin angle ADC}.} Angles ∠ ADB and ∠ ADC are still supplementary, so the right hand sides of these equations are still equal, so we obtain: {estilo de exibição {{fratura {|AB|}{|BD|}}sin angle DAB={fratura {|CA|}{|CD|}}sin angle DAC},} which rearranges to the "generalizado" version of the theorem.

Prova 2 Let D be a point on the line BC, not equal to B or C and such that AD is not an altitude of triangle ABC.

Let B1 be the base (foot) of the altitude in the triangle ABD through B and let C1 be the base of the altitude in the triangle ACD through C. Então, if D is strictly between B and C, one and only one of B1 or C1 lies inside triangle ABC and it can be assumed without loss of generality that B1 does. This case is depicted in the adjacent diagram. If D lies outside of segment BC, then neither B1 nor C1 lies inside the triangle.

∠ DB1B and ∠ DC1C are right angles, while the angles ∠ B1DB and ∠ C1DC are congruent if D lies on the segment BC (isso é, between B and C) and they are identical in the other cases being considered, so the triangles DB1B and DC1C are similar (AAA), o que implica que: {estilo de exibição {fratura {|BD|}{|CD|}}={fratura {|BB_{1}|}{|CC_{1}|}}={fratura {|AB|sin angle BAD}{|CA|sin angle CAD}}.} If D is the foot of an altitude, então, {estilo de exibição {fratura {|BD|}{|AB|}}=sin angle BAD{texto{ e }}{fratura {|CD|}{|CA|}}=sin angle DAC,} and the generalized form follows.

Prova 3 {displaystyle alpha ={tfrac {angle BAC}{2}}=angle BAD=angle CAD} A quick proof can be obtained by looking at the ratio of the areas of the two triangles {displaystyle triangle BAD} e {displaystyle triangle CAD} , which are created by the angle bisector in {estilo de exibição A} . Computing those areas twice using different formulas, isso é {estilo de exibição {tfrac {1}{2}}gh} with base {estilo de exibição g} and altitude {estilo de exibição h} e {estilo de exibição {tfrac {1}{2}}absin(gama )} with sides {estilo de exibição a} , {estilo de exibição b} and their enclosed angle {gama de estilo de exibição } , will yield the desired result.

Deixar {estilo de exibição h} denote the height of the triangles on base {estilo de exibição BC} e {alfa de estilo de exibição } be half of the angle in {estilo de exibição A} . Então {estilo de exibição {fratura {|triangle ABD|}{|triangle ACD|}}={fratura {{fratura {1}{2}}|BD|h}{{fratura {1}{2}}|CD|h}}={fratura {|BD|}{|CD|}}} e {estilo de exibição {fratura {|triangle ABD|}{|triangle ACD|}}={fratura {{fratura {1}{2}}|AB||DE ANÚNCIOS|pecado(alfa )}{{fratura {1}{2}}|CA||DE ANÚNCIOS|pecado(alfa )}}={fratura {|AB|}{|CA|}}} yields {estilo de exibição {fratura {|BD|}{|CD|}}={fratura {|AB|}{|CA|}}.} Exterior angle bisectors exterior angle bisectors (dotted red): Points D, E, F are collinear and the following equations for ratios hold: {estilo de exibição {tfrac {|EB|}{|EC|}}={tfrac {|AB|}{|CA|}}} , {estilo de exibição {tfrac {|FB|}{|FA|}}={tfrac {|CB|}{|CA|}}} , {estilo de exibição {tfrac {|DA|}{|DC|}}={tfrac {|BA|}{|BC|}}} For the exterior angle bisectors in a non-equilateral triangle there exist similar equations for the ratios of the lengths of triangle sides. More precisely if the exterior angle bisector in {estilo de exibição A} intersects the extended side {estilo de exibição BC} dentro {estilo de exibição E} , the exterior angle bisector in {estilo de exibição B} intersects the extended side {estilo de exibição AC} dentro {estilo de exibição D} and the exterior angle bisector in {estilo de exibição C} intersects the extended side {estilo de exibição AB} dentro {estilo de exibição F} , then the following equations hold:[1] {estilo de exibição {fratura {|EB|}{|EC|}}={fratura {|AB|}{|CA|}}} , {estilo de exibição {fratura {|FB|}{|FA|}}={fratura {|CB|}{|CA|}}} , {estilo de exibição {fratura {|DA|}{|DC|}}={fratura {|BA|}{|BC|}}} The three points of intersection between the exterior angle bisectors and the extended triangle sides {estilo de exibição D} , {estilo de exibição E} e {estilo de exibição F} are collinear, that is they lie on a common line.[2] History The angle bisector theorem appears as Proposition 3 of Book VI in Euclid's Elements. According to Heath (1956, p. 197 (volume. 2)), the corresponding statement for an external angle bisector was given by Robert Simson who noted that Pappus assumed this result without proof. Heath goes on to say that Augustus De Morgan proposed that the two statements should be combined as follows:[3] If an angle of a triangle is bisected internally or externally by a straight line which cuts the opposite side or the opposite side produced, the segments of that side will have the same ratio as the other sides of the triangle; e, if a side of a triangle be divided internally or externally so that its segments have the same ratio as the other sides of the triangle, the straight line drawn from the point of section to the angular point which is opposite to the first mentioned side will bisect the interior or exterior angle at that angular point. Applications This section needs expansion with: more theorems/results. Você pode ajudar expandindo-o. (Setembro 2020) This theorem has been used to prove the following theorems/results: Coordinates of the incenter of a triangle Circles of Apollonius References ^ Alfred S. Posamentier: Geometria Euclidiana Avançada: Excursions for Students and Teachers. Springer, 2002, ISBN 9781930190856, pp. 3-4 ^ Roger A. Johnson: Geometria Euclidiana Avançada. Dover 2007, ISBN 978-0-486-46237-0, p. 149 (original publication 1929 with Houghton Mifflin Company (Boston) as Modern Geometry). ^ Heath, Thomas L. (1956). The Thirteen Books of Euclid's Elements (2nd ed. [Facsimile. Original publication: Cambridge University Press, 1925] ed.). Nova york: Publicações de Dover. (3 vols.): ISBN 0-486-60088-2 (volume. 1), ISBN 0-486-60089-0 (volume. 2), ISBN 0-486-60090-4 (volume. 3). Heath's authoritative translation plus extensive historical research and detailed commentary throughout the text. Further reading G.W.I.S Amarasinghe: On the Standard Lengths of Angle Bisectors and the Angle Bisector Theorem, Global Journal of Advanced Research on Classical and Modern Geometries, Volume 01(01), pp. 15 – 27, 2012 External links A Property of Angle Bisectors at cut-the-knot Intro to angle bisector theorem at Khan Academy hide vte Ancient Greek and Hellenistic mathematics (geometria euclidiana) Matemáticos (Linha do tempo) AnaxagorasAnthemiusArchytasAristaeus the ElderAristarchusApolloniusArchimedesAutolycusBionBrysonCallippusCarpusChrysippusCleomedesCononCtesibiusDemocritusDicaearchusDioclesDiophantusDinostratusDionysodorusDomninusEratosthenesEudemusEuclidEudoxusEutociusGeminusHeliodorusHeronHipparchusHippasusHippiasHippocratesHypatiaHypsiclesIsidore of MiletusLeonMarinusMenaechmusMenelausMetrodorusNicomachusNicomedesNicotelesOenopidesPappusPerseusPhilolausPhilonPhilonidesPorphyryPosidoniusProclusPtolemyPythagorasSerenus SimpliciusSosigenesSporusThalesTheaetetusTheanoTheodorusTheodosiusTheon of AlexandriaTheon of SmyrnaThymaridasXenocratesZeno of EleaZeno of SidonZenodorus Treatises AlmagestArchimedes PalimpsestArithmeticaConics (Apolônio)Dados Catoptrics (Euclides)Elementos (Euclides)Medição de um círculo em conóides e esferóides nos tamanhos e distâncias (Aristarco)Sobre tamanhos e distâncias (Hiparco)Na esfera móvel (Autólico)Euclid's OpticsOn SpiralsOn the Sphere and CylinderOstomachionPlanisphaeriumSphaericsThe Quadrature of the ParabolaThe Sand Reckoner Problems Constructible numbers Angle trisectionDoubling the cubeSquaring the circleProblem of Apollonius Concepts and definitions Angle CentralInscribedChordCircles of Apollonius Apollonian circlesApollonian gasketCircumscribed circleCommensurabilityDiophantine equationDoctrine of proportionalityGolden ratioGreek numeralsIncircle and excircles of a triangleMethod of exhaustionParallel postulatePlatonic solidLune of HippocratesQuadratrix of HippiasRegular polygonStraightedge and compass constructionTriangle center Results In Elements Angle bisector theoremExterior angle theoremEuclidean algorithmEuclid's theoremGeometric mean theoremGreek geometric algebraHinge theoremInscribed angle theoremIntercept theoremIntersecting chords theoremIntersecting secants theoremLaw of cosinesPons asinorumPythagorean theoremTangent-secant theoremThales's theoremTheorem of the gnomon Apollonius Apollonius's theorem Other Aristarchus's inequalityCrossbar theoremHeron's formulaIrrational numbersLaw of sinesMenelaus's theoremPappus's area theoremProblem II.8 of ArithmeticaPtolemy's inequalityPtolemy's table of chordsPtolemy's theoremSpiral of Theodorus Centers CyreneLibrary of AlexandriaPlatonic Academy Other Ancient Greek astronomyGreek numeralsLatin translations of the 12th centuryNeusis construction Ancient Greece portal • Mathematics portal Categories: Elementary geometryTheorems about triangles

Se você quiser conhecer outros artigos semelhantes a Angle bisector theorem você pode visitar a categoria Elementary geometry.

Deixe uma resposta

seu endereço de e-mail não será publicado.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação