# Angle bisector theorem

Angle bisector theorem In this diagram, BD:DC = AB:corrente alternata.

In geometria, the angle bisector theorem is concerned with the relative lengths of the two segments that a triangle's side is divided into by a line that bisects the opposite angle. It equates their relative lengths to the relative lengths of the other two sides of the triangle.

Contenuti 1 Teorema 2 Prove 2.1 Prova 1 2.2 Prova 2 2.3 Prova 3 3 Exterior angle bisectors 4 Storia 5 Applicazioni 6 Riferimenti 7 Ulteriori letture 8 External links Theorem Consider a triangle ABC. Let the angle bisector of angle A intersect side BC at a point D between B and C. The angle bisector theorem states that the ratio of the length of the line segment BD to the length of segment CD is equal to the ratio of the length of side AB to the length of side AC: {stile di visualizzazione {frac {|BD|}{|CD|}}={frac {|AB|}{|corrente alternata|}},} e viceversa, if a point D on the side BC of triangle ABC divides BC in the same ratio as the sides AB and AC, then AD is the angle bisector of angle ∠ A.

The generalized angle bisector theorem states that if D lies on the line BC, poi {stile di visualizzazione {frac {|BD|}{|CD|}}={frac {|AB|sin angle DAB}{|corrente alternata|sin angle DAC}}.} This reduces to the previous version if AD is the bisector of ∠ BAC. When D is external to the segment BC, directed line segments and directed angles must be used in the calculation.

The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof.

An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.

Proofs Proof 1 In the above diagram, use the law of sines on triangles ABD and ACD: {stile di visualizzazione {frac {|AB|}{|BD|}}={frac {sin angle ADB}{sin angle DAB}}} (1) {stile di visualizzazione {frac {|corrente alternata|}{|CD|}}={frac {sin angle ADC}{sin angle DAC}}} (2) Angles ∠ ADB and ∠ ADC form a linear pair, questo è, they are adjacent supplementary angles. Since supplementary angles have equal sines, {stile di visualizzazione {sin angle ADB}={sin angle ADC}.} Angles ∠ DAB and ∠ DAC are equal. Perciò, the right hand sides of equations (1) e (2) are equal, so their left hand sides must also be equal.

{stile di visualizzazione {frac {|BD|}{|CD|}}={frac {|AB|}{|corrente alternata|}},} which is the angle bisector theorem.

If angles ∠ DAB and ∠ DAC are unequal, equations (1) e (2) can be re-written as: {stile di visualizzazione {{frac {|AB|}{|BD|}}sin angle DAB=sin angle ADB},} {stile di visualizzazione {{frac {|corrente alternata|}{|CD|}}sin angle DAC=sin angle ADC}.} Angles ∠ ADB and ∠ ADC are still supplementary, so the right hand sides of these equations are still equal, so we obtain: {stile di visualizzazione {{frac {|AB|}{|BD|}}sin angle DAB={frac {|corrente alternata|}{|CD|}}sin angle DAC},} which rearranges to the "generalizzato" version of the theorem.

Prova 2 Let D be a point on the line BC, not equal to B or C and such that AD is not an altitude of triangle ABC.

Let B1 be the base (foot) of the altitude in the triangle ABD through B and let C1 be the base of the altitude in the triangle ACD through C. Quindi, if D is strictly between B and C, one and only one of B1 or C1 lies inside triangle ABC and it can be assumed without loss of generality that B1 does. This case is depicted in the adjacent diagram. If D lies outside of segment BC, then neither B1 nor C1 lies inside the triangle.

∠ DB1B and ∠ DC1C are right angles, while the angles ∠ B1DB and ∠ C1DC are congruent if D lies on the segment BC (questo è, between B and C) and they are identical in the other cases being considered, so the triangles DB1B and DC1C are similar (AAA), il che lo implica: {stile di visualizzazione {frac {|BD|}{|CD|}}={frac {|BB_{1}|}{|CC_{1}|}}={frac {|AB|sin angle BAD}{|corrente alternata|sin angle CAD}}.} If D is the foot of an altitude, poi, {stile di visualizzazione {frac {|BD|}{|AB|}}=sin angle BAD{testo{ e }}{frac {|CD|}{|corrente alternata|}}=sin angle DAC,} and the generalized form follows.

Prova 3 {displaystyle alpha ={tfrac {angle BAC}{2}}=angle BAD=angle CAD} A quick proof can be obtained by looking at the ratio of the areas of the two triangles {displaystyle triangle BAD} e {displaystyle triangle CAD} , which are created by the angle bisector in {stile di visualizzazione A} . Computing those areas twice using different formulas, questo è {stile di visualizzazione {tfrac {1}{2}}gh} with base {stile di visualizzazione g} and altitude {stile di visualizzazione h} e {stile di visualizzazione {tfrac {1}{2}}absin(gamma )} with sides {stile di visualizzazione a} , {stile di visualizzazione b} and their enclosed angle {gamma di stili di visualizzazione } , will yield the desired result.

Permettere {stile di visualizzazione h} denote the height of the triangles on base {stile di visualizzazione aC} e {displaystyle alfa } be half of the angle in {stile di visualizzazione A} . Quindi {stile di visualizzazione {frac {|triangle ABD|}{|triangle ACD|}}={frac {{frac {1}{2}}|BD|h}{{frac {1}{2}}|CD|h}}={frac {|BD|}{|CD|}}} e {stile di visualizzazione {frac {|triangle ABD|}{|triangle ACD|}}={frac {{frac {1}{2}}|AB||ANNO DOMINI|peccato(alfa )}{{frac {1}{2}}|corrente alternata||ANNO DOMINI|peccato(alfa )}}={frac {|AB|}{|corrente alternata|}}} yields {stile di visualizzazione {frac {|BD|}{|CD|}}={frac {|AB|}{|corrente alternata|}}.} Exterior angle bisectors exterior angle bisectors (dotted red): Points D, e, F are collinear and the following equations for ratios hold: {stile di visualizzazione {tfrac {|EB|}{|EC|}}={tfrac {|AB|}{|corrente alternata|}}} , {stile di visualizzazione {tfrac {|FB|}{|FA|}}={tfrac {|CB|}{|circa|}}} , {stile di visualizzazione {tfrac {|DA|}{|DC|}}={tfrac {|BA|}{|AVANTI CRISTO|}}} For the exterior angle bisectors in a non-equilateral triangle there exist similar equations for the ratios of the lengths of triangle sides. More precisely if the exterior angle bisector in {stile di visualizzazione A} intersects the extended side {stile di visualizzazione aC} in {stile di visualizzazione E} , the exterior angle bisector in {stile di visualizzazione B} intersects the extended side {stile di visualizzazione AC} in {stile di visualizzazione D} and the exterior angle bisector in {stile di visualizzazione C} intersects the extended side {stile di visualizzazione AB} in {stile di visualizzazione F} , then the following equations hold:[1] {stile di visualizzazione {frac {|EB|}{|EC|}}={frac {|AB|}{|corrente alternata|}}} , {stile di visualizzazione {frac {|FB|}{|FA|}}={frac {|CB|}{|circa|}}} , {stile di visualizzazione {frac {|DA|}{|DC|}}={frac {|BA|}{|AVANTI CRISTO|}}} The three points of intersection between the exterior angle bisectors and the extended triangle sides {stile di visualizzazione D} , {stile di visualizzazione E} e {stile di visualizzazione F} are collinear, that is they lie on a common line.[2] History The angle bisector theorem appears as Proposition 3 of Book VI in Euclid's Elements. According to Heath (1956, p. 197 (vol. 2)), the corresponding statement for an external angle bisector was given by Robert Simson who noted that Pappus assumed this result without proof. Heath goes on to say that Augustus De Morgan proposed that the two statements should be combined as follows:[3] If an angle of a triangle is bisected internally or externally by a straight line which cuts the opposite side or the opposite side produced, the segments of that side will have the same ratio as the other sides of the triangle; e, if a side of a triangle be divided internally or externally so that its segments have the same ratio as the other sides of the triangle, the straight line drawn from the point of section to the angular point which is opposite to the first mentioned side will bisect the interior or exterior angle at that angular point. Applications This section needs expansion with: more theorems/results. Puoi contribuire aggiungendo ad esso. (settembre 2020) This theorem has been used to prove the following theorems/results: Coordinates of the incenter of a triangle Circles of Apollonius References ^ Alfred S. Posamentier: Geometria euclidea avanzata: Excursions for Students and Teachers. Springer, 2002, ISBN 9781930190856, pp. 3-4 ^ Roger A. Johnson: Geometria euclidea avanzata. Dover 2007, ISBN 978-0-486-46237-0, p. 149 (original publication 1929 with Houghton Mifflin Company (Boston) as Modern Geometry). ^ Heath, Thomas L. (1956). The Thirteen Books of Euclid's Elements (2nd ed. [Facsimile. Original publication: Cambridge University Press, 1925] ed.). New York: Pubblicazioni di Dover. (3 vols.): ISBN 0-486-60088-2 (vol. 1), ISBN 0-486-60089-0 (vol. 2), ISBN 0-486-60090-4 (vol. 3). Heath's authoritative translation plus extensive historical research and detailed commentary throughout the text. Further reading G.W.I.S Amarasinghe: On the Standard Lengths of Angle Bisectors and the Angle Bisector Theorem, Global Journal of Advanced Research on Classical and Modern Geometries, vol 01(01), pp. 15 – 27, 2012 External links A Property of Angle Bisectors at cut-the-knot Intro to angle bisector theorem at Khan Academy hide vte Ancient Greek and Hellenistic mathematics (Geometria euclidea) Matematici (sequenza temporale) AnaxagorasAnthemiusArchytasAristaeus the ElderAristarchusApolloniusArchimedesAutolycusBionBrysonCallippusCarpusChrysippusCleomedesCononCtesibiusDemocritusDicaearchusDioclesDiophantusDinostratusDionysodorusDomninusEratosthenesEudemusEuclidEudoxusEutociusGeminusHeliodorusHeronHipparchusHippasusHippiasHippocratesHypatiaHypsiclesIsidore of MiletusLeonMarinusMenaechmusMenelausMetrodorusNicomachusNicomedesNicotelesOenopidesPappusPerseusPhilolausPhilonPhilonidesPorphyryPosidoniusProclusPtolemyPythagorasSerenus SimpliciusSosigenesSporusThalesTheaetetusTheanoTheodorusTheodosiusTheon of AlexandriaTheon of SmyrnaThymaridasXenocratesZeno of EleaZeno of SidonZenodorus Treatises AlmagestArchimedes PalimpsestArithmeticaConics (Apollonio)Dati Catottrici (Euclide)Elementi (Euclide)Misura di un Cerchio Su Conoidi e Sferoidi Sulle Dimensioni e Distanze (Aristarco)Su Dimensioni e Distanze (Ipparco)Sulla sfera mobile (Autolico)Euclid's OpticsOn SpiralsOn the Sphere and CylinderOstomachionPlanisphaeriumSphaericsThe Quadrature of the ParabolaThe Sand Reckoner Problems Constructible numbers Angle trisectionDoubling the cubeSquaring the circleProblem of Apollonius Concepts and definitions Angle CentralInscribedChordCircles of Apollonius Apollonian circlesApollonian gasketCircumscribed circleCommensurabilityDiophantine equationDoctrine of proportionalityGolden ratioGreek numeralsIncircle and excircles of a triangleMethod of exhaustionParallel postulatePlatonic solidLune of HippocratesQuadratrix of HippiasRegular polygonStraightedge and compass constructionTriangle center Results In Elements Angle bisector theoremExterior angle theoremEuclidean algorithmEuclid's theoremGeometric mean theoremGreek geometric algebraHinge theoremInscribed angle theoremIntercept theoremIntersecting chords theoremIntersecting secants theoremLaw of cosinesPons asinorumPythagorean theoremTangent-secant theoremThales's theoremTheorem of the gnomon Apollonius Apollonius's theorem Other Aristarchus's inequalityCrossbar theoremHeron's formulaIrrational numbersLaw of sinesMenelaus's theoremPappus's area theoremProblem II.8 of ArithmeticaPtolemy's inequalityPtolemy's table of chordsPtolemy's theoremSpiral of Theodorus Centers CyreneLibrary of AlexandriaPlatonic Academy Other Ancient Greek astronomyGreek numeralsLatin translations of the 12th centuryNeusis construction Ancient Greece portal • Mathematics portal Categories: Elementary geometryTheorems about triangles

Se vuoi conoscere altri articoli simili a Angle bisector theorem puoi visitare la categoria Elementary geometry.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni