Anderson's theorem

In matematica, Anderson's theorem is a result in real analysis and geometry which says that the integral of an integrable, symmetric, unimodal, non-negative function f over an n-dimensional convex body K does not decrease if K is translated inwards towards the origin. This is a natural statement, since the graph of f can be thought of as a hill with a single peak over the origin; però, for n ≥ 2, the proof is not entirely obvious, as there may be points x of the body K where the value f(X) is larger than at the corresponding translate of x.

Anderson's theorem

Jump to navigation
Jump to search

On when a function on convex body K does not decrease if K is translated inwards
This article is about Anderson's theorem in mathematics. For the Anderson orthogonality theorem in physics, vedere Anderson orthogonality theorem. For the superconductivity theorem, vedere Anderson's theorem (superconductivity).

In matematica, Anderson's teorema is a result in real analysis e geometria which says that the integral of an integrable, symmetric, unimodal, non-negative function f over an n-dimensionale convex body K does not decrease if K is translated inwards towards the origin. This is a natural statement, since the graph di f can be thought of as a hill with a single peak over the origin; però, per n ≥ 2, the proof is not entirely obvious, as there may be points X of the body K where the value f(X) is larger than at the corresponding translate of X.

Anderson's theorem also has an interesting application to probability theory.

Índice
  1. Enunciato del teorema[]
  2. Application to probability theory[]
  3. Riferimenti[]

Enunciato del teorema[]

Permettere K be a convex body in n-dimensionale Euclidean space Rn questo è symmetric with respect to reflection in the origin, cioè. K = −K. Permettere f : Rn →R be a non-negativo, symmetric, globally integrable function; cioè.

  • f(X≥ 0 for all X Rn
  • f(X) =f(−X) per tutti X Rn

  • R n f ( X ) d X < + . {displaystyle int _{mathbb {R} ^{n}}f(X),matematica {d} X<+infty .}

    "{displaystyle

Suppose also that the super-level sets l(ft) di f, definito da

l ( f , t ) = { X R n | f ( X ) t } , {stile di visualizzazione L(f,t)={xin mathbb {R} ^{n}|f(X)geq t},}

"{stile

sono convex subsets di Rn per ogni t ≥ 0. (This property is sometimes referred to as being unimodal.) Quindi, for any 0 ≤c ≤ 1 and y Rn,

K f ( X + c y ) d X K f ( X + y ) d X . {displaystyle int _{K}f(x+cy),matematica {d} xgeq int _{K}f(x+y),matematica {d} X.}

"{displaystyle

Application to probability theory[]

Given a probability space (Oh, S, pr), supporre che X : Ω →Rn è un Rn-apprezzato random variable insieme a probability density function f : Rn →[0, +∞) e quello Y : Ω →Rn è un independent random variable. The probability density functions of many well-known probability distributions are p-concave per alcuni p, and hence unimodal. If they are also symmetric (per esempio. il Laplace e normal distributions), then Anderson's theorem applies, in quale caso

pr ( X K ) pr ( X + Y K ) {stile di visualizzazione Pr(Xin K)geq Pr(X+Yin K)}

"{stile

for any origin-symmetric convex body K Rn.

Riferimenti[]

  • Gardner, Richard J. (2002). "The Brunn-Minkowski inequality". Toro. Amer. Matematica. soc. (N.S.). 39 (3): 355–405 (electronic). doi:10.1090/S0273-0979-02-00941-2.


Se vuoi conoscere altri articoli simili a Anderson's theorem puoi visitare la categoria Teoremi di probabilità.

lascia un commento

L'indirizzo email non verrà pubblicato.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni