Anderson's theorem

In Mathematik, Anderson's theorem is a result in real analysis and geometry which says that the integral of an integrable, symmetric, unimodal, non-negative function f over an n-dimensional convex body K does not decrease if K is translated inwards towards the origin. This is a natural statement, since the graph of f can be thought of as a hill with a single peak over the origin; jedoch, for n ≥ 2, the proof is not entirely obvious, as there may be points x of the body K where the value f(x) is larger than at the corresponding translate of x.

Anderson's theorem

Jump to navigation
Jump to search

On when a function on convex body K does not decrease if K is translated inwards
This article is about Anderson's theorem in mathematics. For the Anderson orthogonality theorem in physics, sehen Anderson orthogonality theorem. For the superconductivity theorem, sehen Anderson's theorem (superconductivity).

Im Mathematik, Anderson's Satz is a result in real analysis und Geometrie which says that the integral of an integrable, symmetric, unimodal, non-negative function f over an n-dimensional convex body K does not decrease if K is translated inwards towards the origin. This is a natural statement, since the graph von f can be thought of as a hill with a single peak over the origin; jedoch, zum n ≥ 2, the proof is not entirely obvious, as there may be points x of the body K where the value f(x) is larger than at the corresponding translate of x.

Anderson's theorem also has an interesting application to Wahrscheinlichkeitstheorie.

Índice
  1. Aussage des Theorems[]
  2. Application to probability theory[]
  3. Verweise[]

Aussage des Theorems[]

Lassen K be a convex body in n-dimensional Euclidean space Rn das ist symmetric with respect to reflection in the origin, d.h. K = −K. Lassen f : Rn →R be a non-Negativ, symmetric, globally integrable function; d.h.

  • f(x≥ 0 for all x Rn
  • f(x) =f(−x) für alle x Rn

  • R n f ( x ) d x < + . {Anzeigestil int _{mathbb {R} ^{n}}f(x),Mathrm {d} x<+unendlich .}

    "{Anzeigestil

Suppose also that the super-level sets L(ft) von f, definiert von

L ( f , t ) = { x R n | f ( x ) t } , {Anzeigestil L(f,t)={xin mathbb {R} ^{n}|f(x)geq t},}

"{Anzeigestil

sind convex subsets von Rn für jeden t ≥ 0. (This property is sometimes referred to as being unimodal.) Dann, for any 0 ≤c ≤ 1 and j Rn,

K f ( x + c j ) d x K f ( x + j ) d x . {Anzeigestil int _{K}f(x+cy),Mathrm {d} xgeq int _{K}f(x+y),Mathrm {d} x.}

"{Anzeigestil

Application to probability theory[]

Given a probability space (Oh, S, Pr), nehme an, dass X : Ω →Rn ist ein Rn-geschätzt random variable mit probability density function f : Rn →[0, +∞) und das Y : Ω →Rn ist ein independent random variable. The probability density functions of many well-known probability distributions are p-concave für einige p, and hence unimodal. If they are also symmetric (z.B. das Laplace und normal distributions), then Anderson's theorem applies, in welchem ​​Fall

Pr ( X K ) Pr ( X + Y K ) {Anzeigestil Pr(Xin K)geq Pr(X+Yin K)}

"{Anzeigestil

for any origin-symmetric convex body K Rn.

Verweise[]

  • Gardner, Richard J. (2002). "The Brunn-Minkowski inequality". Stier. Amer. Mathematik. Soc. (N.S.). 39 (3): 355–405 (electronic). doi:10.1090/S0273-0979-02-00941-2.


Wenn Sie andere ähnliche Artikel wissen möchten Anderson's theorem Sie können die Kategorie besuchen Wahrscheinlichkeitssätze.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen