Teorema di Alperin–Brauer–Gorenstein

In matematica, the Alperin–Brauer–Gorenstein theorem characterizes the finite simple groups with quasidihedral or wreathed[1] Sylow 2-subgroups. These are isomorphic either to three-dimensional projective special linear groups or projective special unitary groups over a finite field of odd order, depending on a certain congruence, or to the Mathieu group
{stile di visualizzazione M_{11}}
. Alperin, Brauer & Gorenstein (1970) proved this in the course of 261 pagine. The subdivision by 2-fusion is sketched there, given as an exercise in Gorenstein (1968, cap. 7), and presented in some detail in Kwon et al. (1980).

Teorema di Alperin–Brauer–Gorenstein

Jump to navigation
Jump to search

In matematica, il Teorema di Alperin–Brauer–Gorenstein characterizes the finite simple groups insieme a quasidihedral or wreathed[1] Sylow 2-subgroups. These are isomorphic either to three-dimensional projective special linear groups o projective special unitary groups over a finite field of odd order, depending on a certain congruence, or to the Mathieu group

M 11 {stile di visualizzazione M_{11}}

"M_{11}".

Alperin, Brauer & Gorenstein (1970) proved this in the course of 261 pagine.

The subdivision by 2-fusion is sketched there, given as an exercise in Gorenstein (1968, cap. 7), and presented in some detail in Kwon et al. (1980).

Índice
  1. Appunti[]
  2. Riferimenti[]

Appunti[]

  1. ^ A 2-group is wreathed if it is a nonabelian semidirect product of a maximal subgroup that is a prodotto diretto of two cyclic groups of the same order, questo è, if it is the wreath product of a cyclic 2-group with the symmetric group Su 2 punti.

Riferimenti[]

  • Alperin, J. l.Brauer, R.Gorenstein, D. (1970), "Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups.", Transazioni dell'American Mathematical Society, Società matematica americana, 151 (1): 1–261, doi:10.2307/1995627, ISSN 0002-9947, JSTOR 1995627, SIG 0284499

  • Gorenstein, D. (1968), Finite groups, Harper & Row Publishers, SIG 0231903
  • Kwon, T.; Lee, K.; Cho, IO.; Park, S. (1980), "On finite groups with quasidihedral Sylow 2-groups", Journal of the Korean Mathematical Society, 17 (1): 91–97, ISSN 0304-9914, SIG 0593804, archived from the original Su 2011-07-22, recuperato 2010-07-16


Se vuoi conoscere altri articoli simili a Teorema di Alperin–Brauer–Gorenstein puoi visitare la categoria Stub di algebra astratta.

lascia un commento

L'indirizzo email non verrà pubblicato.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni