# Teorema di Alperin–Brauer–Gorenstein

In matematica, the Alperin–Brauer–Gorenstein theorem characterizes the finite simple groups with quasidihedral or wreathed[1] Sylow 2-subgroups. These are isomorphic either to three-dimensional projective special linear groups or projective special unitary groups over a finite field of odd order, depending on a certain congruence, or to the Mathieu group
{stile di visualizzazione M_{11}}
. Alperin, Brauer & Gorenstein (1970) proved this in the course of 261 pagine. The subdivision by 2-fusion is sketched there, given as an exercise in Gorenstein (1968, cap. 7), and presented in some detail in Kwon et al. (1980).

# Teorema di Alperin–Brauer–Gorenstein

In matematica, il Teorema di Alperin–Brauer–Gorenstein characterizes the finite simple groups insieme a quasidihedral or wreathed[1] Sylow 2-subgroups. These are isomorphic either to three-dimensional projective special linear groups o projective special unitary groups over a finite field of odd order, depending on a certain congruence, or to the Mathieu group

$"{displaystyle$

.

Alperin, Brauer & Gorenstein (1970) proved this in the course of 261 pagine.

The subdivision by 2-fusion is sketched there, given as an exercise in Gorenstein (1968, cap. 7), and presented in some detail in Kwon et al. (1980).

Índice

## Appunti[]

1. ^ A 2-group is wreathed if it is a nonabelian semidirect product of a maximal subgroup that is a prodotto diretto of two cyclic groups of the same order, questo è, if it is the wreath product of a cyclic 2-group with the symmetric group Su 2 punti.

## Riferimenti[]

• Alperin, J. l.Brauer, R.Gorenstein, D. (1970), "Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups.", Transazioni dell'American Mathematical Society, Società matematica americana, 151 (1): 1–261, doi:10.2307/1995627, ISSN 0002-9947, JSTOR 1995627, SIG 0284499

• Gorenstein, D. (1968), Finite groups, Harper & Row Publishers, SIG 0231903
• Kwon, T.; Lee, K.; Cho, IO.; Park, S. (1980), "On finite groups with quasidihedral Sylow 2-groups", Journal of the Korean Mathematical Society, 17 (1): 91–97, ISSN 0304-9914, SIG 0593804, archived from the original Su 2011-07-22, recuperato 2010-07-16

Se vuoi conoscere altri articoli simili a Teorema di Alperin–Brauer–Gorenstein puoi visitare la categoria Stub di algebra astratta.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni