Théorème d'Alperin – Brauer – Gorenstein

En mathématiques, the Alperin–Brauer–Gorenstein theorem characterizes the finite simple groups with quasidihedral or wreathed[1] Sylow 2-subgroups. These are isomorphic either to three-dimensional projective special linear groups or projective special unitary groups over a finite field of odd order, depending on a certain congruence, or to the Mathieu group
{style d'affichage M_{11}}
. Alperin, Brauer & Gorenstein (1970) proved this in the course of 261 pages. The subdivision by 2-fusion is sketched there, given as an exercise in Gorenstein (1968, Ch. 7), and presented in some detail in Kwon et al. (1980).

Théorème d'Alperin – Brauer – Gorenstein

Aller à la navigation
Aller à la recherche

Dans mathématiques, la Théorème d'Alperin – Brauer – Gorenstein characterizes the finite simple groups avec quasidihedral or wreathed[1] Sylow 2-subgroups. These are isomorphic either to three-dimensional projective special linear groups ou projective special unitary groups over a finite field of odd order, depending on a certain congruence, or to the Mathieu group

M 11 {style d'affichage M_{11}}

"M_{11}".

Alperin, Brauer & Gorenstein (1970) proved this in the course of 261 pages.

The subdivision by 2-fusion is sketched there, given as an exercise in Gorenstein (1968, Ch. 7), and presented in some detail in Kwon et al. (1980).

Indice
  1. Remarques[]
  2. Références[]

Remarques[]

  1. ^ A 2-group is wreathed if it is a nonabelian semidirect product of a maximal subgroup that is a produit direct of two cyclic groups of the same order, C'est, if it is the wreath product of a cyclic 2-group with the symmetric group sur 2 points.

Références[]

  • Alperin, J. L.Brauer, R.Gorenstein, ré. (1970), "Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups.", Transactions de l'American Mathematical Society, Société mathématique américaine, 151 (1): 1–261, est ce que je:10.2307/1995627, ISSN 0002-9947, JSTOR 1995627, M 0284499

  • Gorenstein, ré. (1968), Finite groups, harpiste & Row Publishers, M 0231903
  • Kwon, T; Lee, K; Cho, JE.; Park, S. (1980), "On finite groups with quasidihedral Sylow 2-groups", Journal of the Korean Mathematical Society, 17 (1): 91–97, ISSN 0304-9914, M 0593804, archived from the original sur 2011-07-22, récupéré 2010-07-16


Si vous voulez connaître d'autres articles similaires à Théorème d'Alperin – Brauer – Gorenstein vous pouvez visiter la catégorie Abstract algebra stubs.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations