Alperin–Brauer–Gorenstein theorem

In mathematics, the Alperin–Brauer–Gorenstein theorem characterizes the finite simple groups with quasidihedral or wreathed[1] Sylow 2-subgroups. These are isomorphic either to three-dimensional projective special linear groups or projective special unitary groups over a finite field of odd order, depending on a certain congruence, or to the Mathieu group
{displaystyle M_{11}}
. Alperin, Brauer & Gorenstein (1970) proved this in the course of 261 pages. The subdivision by 2-fusion is sketched there, given as an exercise in Gorenstein (1968, Ch. 7), and presented in some detail in Kwon et al. (1980).
Alperin–Brauer–Gorenstein theorem
Jump to navigation
Jump to search
In mathematics, the Alperin–Brauer–Gorenstein theorem characterizes the finite simple groups with quasidihedral or wreathed[1] Sylow 2-subgroups. These are isomorphic either to three-dimensional projective special linear groups or projective special unitary groups over a finite field of odd order, depending on a certain congruence, or to the Mathieu group
.
Alperin, Brauer & Gorenstein (1970) proved this in the course of 261 pages.
The subdivision by 2-fusion is sketched there, given as an exercise in Gorenstein (1968, Ch. 7), and presented in some detail in Kwon et al. (1980).
Notes[]
- ^ A 2-group is wreathed if it is a nonabelian semidirect product of a maximal subgroup that is a direct product of two cyclic groups of the same order, that is, if it is the wreath product of a cyclic 2-group with the symmetric group on 2 points.
References[]
Alperin, J. L.Brauer, R.Gorenstein, D. (1970), "Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups.", Transactions of the American Mathematical Society, American Mathematical Society, 151 (1): 1–261, doi:10.2307/1995627, ISSN 0002-9947, JSTOR 1995627, MR 0284499
- Gorenstein, D. (1968), Finite groups, Harper & Row Publishers, MR 0231903
- Kwon, T.; Lee, K.; Cho, I.; Park, S. (1980), "On finite groups with quasidihedral Sylow 2-groups", Journal of the Korean Mathematical Society, 17 (1): 91–97, ISSN 0304-9914, MR 0593804, archived from the original on 2011-07-22, retrieved 2010-07-16
Si quieres conocer otros artículos parecidos a Alperin–Brauer–Gorenstein theorem puedes visitar la categoría Abstract algebra stubs.
Deja una respuesta