Albert–Brauer–Hasse–Noether theorem

Albert–Brauer–Hasse–Noether theorem This article includes a list of references, leitura relacionada ou links externos, mas suas fontes permanecem obscuras porque faltam citações em linha. Ajude a melhorar este artigo introduzindo citações mais precisas. (abril 2016) (Saiba como e quando remover esta mensagem de modelo) In algebraic number theory, the Albert–Brauer–Hasse–Noether theorem states that a central simple algebra over an algebraic number field K which splits over every completion Kv is a matrix algebra over K. The theorem is an example of a local-global principle in algebraic number theory and leads to a complete description of finite-dimensional division algebras over algebraic number fields in terms of their local invariants. It was proved independently by Richard Brauer, Helmut Hasse, and Emmy Noether and by Abraham Adrian Albert.

Conteúdo 1 Declaração do teorema 2 Formulários 3 Veja também 4 Referências 5 Notes Statement of the theorem Let A be a central simple algebra of rank d over an algebraic number field K. Suppose that for any valuation v, A splits over the corresponding local field Kv: {estilo de exibição Aotimes _{K}K_{v}simeq M_{d}(K_{v}).} Then A is isomorphic to the matrix algebra Md(K).

Applications Using the theory of Brauer group, one shows that two central simple algebras A and B over an algebraic number field K are isomorphic over K if and only if their completions Av and Bv are isomorphic over the completion Kv for every v.

Together with the Grunwald–Wang theorem, the Albert–Brauer–Hasse–Noether theorem implies that every central simple algebra over an algebraic number field is cyclic, ou seja. can be obtained by an explicit construction from a cyclic field extension L/K .

See also Class field theory Hasse norm theorem References Albert, A.A.; Hasse, H. (1932), "A determination of all normal division algebras over an algebraic number field", Trans. América. Matemática. Soc., 34 (3): 722–726, doi:10.1090/s0002-9947-1932-1501659-x, Zbl 0005.05003 Brauer, R.; Hasse, H.; Noether, E. (1932), "Beweis eines Hauptsatzes in der Theorie der Algebren", J. reine angew. Matemática., 167: 399–404 Fenster, D.D.; Schwermer, J. (2005), "Delicate collaboration: Adrian Albert and Helmut Hasse and the Principal Theorem in Division Algebras", Archive for History of Exact Sciences, 59 (4): 349–379, doi:10.1007/s00407-004-0093-6 Pierce, Ricardo (1982), Associative algebras, Textos de Graduação em Matemática, volume. 88, New York-Berlin: Springer-Verlag, ISBN 0-387-90693-2, Zbl 0497.16001 Reiner, EU. (2003), Maximal Orders, Monografias da Sociedade Matemática de Londres. Nova série, volume. 28, imprensa da Universidade de Oxford, p. 276, ISBN 0-19-852673-3, Zbl 1024.16008 Roquette, Peter (2005), "The Brauer–Hasse–Noether theorem in historical perspective" (PDF), Schriften der Mathematisch-Naturwissenschaftlichen Klasse der Heidelberger Akademie der Wissenschaften, 15, CiteSeerX 10.1.1.72.4101, SENHOR 2222818, Zbl 1060.01009, recuperado 2009-07-05 Revised version — Roquette, Peter (2013), Contributions to the history of number theory in the 20th century, Heritage of European Mathematics, Zurique: Sociedade Europeia de Matemática, pp. 1–76, ISBN 978-3-03719-113-2, Zbl 1276.11001 Alberto, Nancy E. (2005), "A Cubed & His Algebra, iUniverse, ISBN 978-0-595-32817-8 Notes Categories: Teoria de campo de classeTeoremas em teoria algébrica dos números

Se você quiser conhecer outros artigos semelhantes a Albert–Brauer–Hasse–Noether theorem você pode visitar a categoria Class field theory.

Deixe uma resposta

seu endereço de e-mail não será publicado.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação