# Albert–Brauer–Hasse–Noether theorem

Albert–Brauer–Hasse–Noether theorem This article includes a list of references, weiterführende Lektüre oder externe Links, Die Quellen bleiben jedoch unklar, da Inline-Zitate fehlen. Bitte helfen Sie mit, diesen Artikel zu verbessern, indem Sie genauere Zitate einfügen. (April 2016) (Erfahren Sie, wie und wann Sie diese Vorlagennachricht entfernen können) In algebraic number theory, the Albert–Brauer–Hasse–Noether theorem states that a central simple algebra over an algebraic number field K which splits over every completion Kv is a matrix algebra over K. The theorem is an example of a local-global principle in algebraic number theory and leads to a complete description of finite-dimensional division algebras over algebraic number fields in terms of their local invariants. It was proved independently by Richard Brauer, Helmut Hasse, and Emmy Noether and by Abraham Adrian Albert.

Inhalt 1 Aussage des Theorems 2 Anwendungen 3 Siehe auch 4 Verweise 5 Notes Statement of the theorem Let A be a central simple algebra of rank d over an algebraic number field K. Suppose that for any valuation v, A splits over the corresponding local field Kv: {displaystyle Aotimes _{K}K_{v}simeq M_{d}(K_{v}).} Then A is isomorphic to the matrix algebra Md(K).

Applications Using the theory of Brauer group, one shows that two central simple algebras A and B over an algebraic number field K are isomorphic over K if and only if their completions Av and Bv are isomorphic over the completion Kv for every v.

Together with the Grunwald–Wang theorem, the Albert–Brauer–Hasse–Noether theorem implies that every central simple algebra over an algebraic number field is cyclic, d.h. can be obtained by an explicit construction from a cyclic field extension L/K .

See also Class field theory Hasse norm theorem References Albert, A.A.; Hasse, H. (1932), "A determination of all normal division algebras over an algebraic number field", Trans. Amer. Mathematik. Soc., 34 (3): 722–726, doi:10.1090/s0002-9947-1932-1501659-x, Zbl 0005.05003 Brauer, R.; Hasse, H.; Noether, E. (1932), "Beweis eines Hauptsatzes in der Theorie der Algebren", J. reine angew. Mathematik., 167: 399–404 Fenster, D.D.; Schwermer, J. (2005), "Delicate collaboration: Adrian Albert and Helmut Hasse and the Principal Theorem in Division Algebras", Archive for History of Exact Sciences, 59 (4): 349–379, doi:10.1007/s00407-004-0093-6 Pierce, Richard (1982), Associative algebras, Abschlusstexte in Mathematik, vol. 88, New York-Berlin: Springer-Verlag, ISBN 0-387-90693-2, Zbl 0497.16001 Reiner, ich. (2003), Maximal Orders, Monographien der London Mathematical Society. Neue Serien, vol. 28, Oxford University Press, p. 276, ISBN 0-19-852673-3, Zbl 1024.16008 Roquette, Peter (2005), "The Brauer–Hasse–Noether theorem in historical perspective" (Pdf), Schriften der Mathematisch-Naturwissenschaftlichen Klasse der Heidelberger Akademie der Wissenschaften, 15, CiteSeerX 10.1.1.72.4101, HERR 2222818, Zbl 1060.01009, abgerufen 2009-07-05 Revised version — Roquette, Peter (2013), Contributions to the history of number theory in the 20th century, Heritage of European Mathematics, Zürich: Europäische Mathematische Gesellschaft, pp. 1–76, ISBN 978-3-03719-113-2, Zbl 1276.11001 Albert, Nancy E. (2005), "A Cubed & His Algebra, iUniverse, ISBN 978-0-595-32817-8 Notes Categories: KlassenkörpertheorieSätze in der algebraischen Zahlentheorie

Wenn Sie andere ähnliche Artikel wissen möchten Albert–Brauer–Hasse–Noether theorem Sie können die Kategorie besuchen Class field theory.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen