Albert–Brauer–Hasse–Noether theorem

Albert–Brauer–Hasse–Noether theorem This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (April 2016) (Learn how and when to remove this template message) In algebraic number theory, the Albert–Brauer–Hasse–Noether theorem states that a central simple algebra over an algebraic number field K which splits over every completion Kv is a matrix algebra over K. The theorem is an example of a local-global principle in algebraic number theory and leads to a complete description of finite-dimensional division algebras over algebraic number fields in terms of their local invariants. It was proved independently by Richard Brauer, Helmut Hasse, and Emmy Noether and by Abraham Adrian Albert.

Contents 1 Statement of the theorem 2 Applications 3 See also 4 References 5 Notes Statement of the theorem Let A be a central simple algebra of rank d over an algebraic number field K. Suppose that for any valuation v, A splits over the corresponding local field Kv: {displaystyle Aotimes _{K}K_{v}simeq M_{d}(K_{v}).} Then A is isomorphic to the matrix algebra Md(K).

Applications Using the theory of Brauer group, one shows that two central simple algebras A and B over an algebraic number field K are isomorphic over K if and only if their completions Av and Bv are isomorphic over the completion Kv for every v.

Together with the Grunwald–Wang theorem, the Albert–Brauer–Hasse–Noether theorem implies that every central simple algebra over an algebraic number field is cyclic, i.e. can be obtained by an explicit construction from a cyclic field extension L/K .

See also Class field theory Hasse norm theorem References Albert, A.A.; Hasse, H. (1932), "A determination of all normal division algebras over an algebraic number field", Trans. Amer. Math. Soc., 34 (3): 722–726, doi:10.1090/s0002-9947-1932-1501659-x, Zbl 0005.05003 Brauer, R.; Hasse, H.; Noether, E. (1932), "Beweis eines Hauptsatzes in der Theorie der Algebren", J. reine angew. Math., 167: 399–404 Fenster, D.D.; Schwermer, J. (2005), "Delicate collaboration: Adrian Albert and Helmut Hasse and the Principal Theorem in Division Algebras", Archive for History of Exact Sciences, 59 (4): 349–379, doi:10.1007/s00407-004-0093-6 Pierce, Richard (1982), Associative algebras, Graduate Texts in Mathematics, vol. 88, New York-Berlin: Springer-Verlag, ISBN 0-387-90693-2, Zbl 0497.16001 Reiner, I. (2003), Maximal Orders, London Mathematical Society Monographs. New Series, vol. 28, Oxford University Press, p. 276, ISBN 0-19-852673-3, Zbl 1024.16008 Roquette, Peter (2005), "The Brauer–Hasse–Noether theorem in historical perspective" (PDF), Schriften der Mathematisch-Naturwissenschaftlichen Klasse der Heidelberger Akademie der Wissenschaften, 15, CiteSeerX, MR 2222818, Zbl 1060.01009, retrieved 2009-07-05 Revised version — Roquette, Peter (2013), Contributions to the history of number theory in the 20th century, Heritage of European Mathematics, Zürich: European Mathematical Society, pp. 1–76, ISBN 978-3-03719-113-2, Zbl 1276.11001 Albert, Nancy E. (2005), "A Cubed & His Algebra, iUniverse, ISBN 978-0-595-32817-8 Notes Categories: Class field theoryTheorems in algebraic number theory

Si quieres conocer otros artículos parecidos a Albert–Brauer–Hasse–Noether theorem puedes visitar la categoría Class field theory.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.


Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información