Méthode Akra-Bazzi

Méthode Akra-Bazzi (Redirected from Akra–Bazzi theorem) Jump to navigation Jump to search This article includes a list of general references, mais il manque suffisamment de citations en ligne correspondantes. Merci d'aider à améliorer cet article en introduisant des citations plus précises. (Février 2013) (Découvrez comment et quand supprimer ce modèle de message) In computer science, the Akra–Bazzi method, or Akra–Bazzi theorem, is used to analyze the asymptotic behavior of the mathematical recurrences that appear in the analysis of divide and conquer algorithms where the sub-problems have substantially different sizes. It is a generalization of the master theorem for divide-and-conquer recurrences, which assumes that the sub-problems have equal size. It is named after mathematicians Mohamad Akra and Louay Bazzi.[1] Contenu 1 Formulation 2 Exemple 3 Importance 4 Voir également 5 Références 6 External links Formulation The Akra–Bazzi method applies to recurrence formulas of the form[1] {style d'affichage T(X)= g(X)+somme _{je=1}^{k}un_{je}J(b_{je}x+h_{je}(X))qquad {texte{pour }}xgeq x_{0}.} The conditions for usage are: sufficient base cases are provided {style d'affichage a_{je}} et {style d'affichage b_{je}} are constants for all {style d'affichage i} {style d'affichage a_{je}>0} pour tous {style d'affichage i} {style d'affichage 03} . In applying the Akra–Bazzi method, the first step is to find the value of {style d'affichage p} Pour qui {style d'affichage {frac {7}{4}}la gauche({frac {1}{2}}droit)^{p}+la gauche({frac {3}{4}}droit)^{p}=1} . Dans cet exemple, {style d'affichage p=2} . Alors, using the formula, the asymptotic behavior can be determined as follows:[3] {style d'affichage {commencer{aligné}J(X)&in Theta left(x^{p}la gauche(1+entier _{1}^{X}{frac {g(tu)}{u^{p+1}}},duright)droit)\&=Theta left(x^{2}la gauche(1+entier _{1}^{X}{frac {u^{2}}{u^{3}}},duright)droit)\&=Theta (x^{2}(1+en x))\&=Theta (x^{2}journal x).fin{aligné}}} Significance The Akra–Bazzi method is more useful than most other techniques for determining asymptotic behavior because it covers such a wide variety of cases. Its primary application is the approximation of the running time of many divide-and-conquer algorithms. Par exemple, in the merge sort, the number of comparisons required in the worst case, which is roughly proportional to its runtime, is given recursively as {style d'affichage T(1)=0} et {style d'affichage T(n)=Tleft(leftlfloor {frac {1}{2}}nrightrfloor right)+Tleft(leftlceil {frac {1}{2}}nrightrceil right)+n-1} for integers {displaystyle n>0} , and can thus be computed using the Akra–Bazzi method to be {style d'affichage Thêta (loyer m)} .

See also Master theorem (analysis of algorithms) Asymptotic complexity References ^ Jump up to: a b Akra, Mohamad; Bazzi, Louay (Peut 1998). "On the solution of linear recurrence equations". Computational Optimization and Applications. 10 (2): 195–210. est ce que je:10.1023/UN:1018373005182. ^ "Proof and application on few examples" (PDF). ^ Cormen, Thomas; Leiserson, Charles; Rivest, Ronald; Stein, Clifford (2009). Introduction to Algorithms. Presse du MIT. ISBN 978-0262033848. External links O Método de Akra-Bazzi na Resolução de Equações de Recorrência (in Portuguese) Catégories: Asymptotic analysisTheorems in discrete mathematicsRecurrence relationsBazzi family

Si vous voulez connaître d'autres articles similaires à Méthode Akra-Bazzi vous pouvez visiter la catégorie Asymptotic analysis.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations