AF+BG theorem

AF+BG theorem This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (October 2019) (Learn how and when to remove this template message) In algebraic geometry the AF+BG theorem (also known as Max Noether's fundamental theorem) is a result of Max Noether that asserts that, if the equation of an algebraic curve in the complex projective plane belongs locally (at each intersection point) to the ideal generated by the equations of two other algebraic curves, then it belongs globally to this ideal.

Contents 1 Statement 2 Related results 3 References 4 External links Statement Let F, G, and H be homogeneous polynomials in three variables, with H having higher degree than F and G; let a = deg H − deg F and b = deg H − deg G (both positive integers) be the differences of the degrees of the polynomials. Suppose that the greatest common divisor of F and G is a constant, which means that the projective curves that they define in the projective plane P2 have an intersection consisting in a finite number of points. For each point P of this intersection, the polynomials F and G generate an ideal (F, G)P of the local ring of P2 at P (this local ring is the ring of the fractions n/d, where n and d are polynomials in three variables and d(P) ≠ 0). The theorem asserts that, if H lies in (F, G)P for every intersection point P, then H lies in the ideal (F, G); that is, there are homogeneous polynomials A and B of degrees a and b, respectively, such that H = AF + BG. Furthermore, any two choices of A differ by a multiple of G, and similarly any two choices of B differ by a multiple of F.

Related results This theorem may be viewed as a generalization of Bézout's identity, which provides a condition under which an integer or a univariate polynomial h may be expressed as an element of the ideal generated by two other integers or univariate polynomials f and g: such a representation exists exactly when h is a multiple of the greatest common divisor of f and g. The AF+BG condition expresses, in terms of divisors (sets of points, with multiplicities), a similar condition under which a homogeneous polynomial H in three variables can be written as an element of the ideal generated by two other polynomials F and G.

This theorem is also a refinement, for this particular case, of Hilbert's Nullstellensatz, which provides a condition expressing that some power of a polynomial h (in any number of variables) belongs to the ideal generated by a finite set of polynomials.

References Fulton, William (2008), "5.5 Max Noether's Fundamental Theorem and 5.6 Applications of Noether's Theorem", Algebraic Curves: An Introduction to Algebraic Geometry (PDF), pp. 60–65. Griffiths, Phillip; Harris, Joseph (1978), Principles of Algebraic Geometry, John Wiley & Sons, ISBN 978-0-471-05059-9. External links Weisstein, Eric W., "Noether's Fundamental Theorem", MathWorld hide vte Topics in algebraic curves Rational curves Five points determine a conicProjective lineRational normal curveRiemann sphereTwisted cubic Elliptic curves Analytic theory Elliptic functionElliptic integralFundamental pair of periodsModular form Arithmetic theory Counting points on elliptic curvesDivision polynomialsHasse's theorem on elliptic curvesMazur's torsion theoremModular elliptic curveModularity theoremMordell–Weil theoremNagell–Lutz theoremSupersingular elliptic curveSchoof's algorithmSchoof–Elkies–Atkin algorithm Applications Elliptic curve cryptographyElliptic curve primality Higher genus De Franchis theoremFaltings's theoremHurwitz's automorphisms theoremHurwitz surfaceHyperelliptic curve Plane curves AF+BG theoremBézout's theoremBitangentCayley–Bacharach theoremConic sectionCramer's paradoxCubic plane curveFermat curveGenus–degree formulaHilbert's sixteenth problemNagata's conjecture on curvesPlücker formulaQuartic plane curveReal plane curve Riemann surfaces Belyi's theoremBring's curveBolza surfaceCompact Riemann surfaceDessin d'enfantDifferential of the first kindKlein quarticRiemann's existence theoremRiemann–Roch theoremTeichmüller spaceTorelli theorem Constructions Dual curvePolar curveSmooth completion Structure of curves Divisors on curves Abel–Jacobi mapBrill–Noether theoryClifford's theorem on special divisorsGonality of an algebraic curveJacobian varietyRiemann–Roch theoremWeierstrass pointWeil reciprocity law Moduli ELSV formulaGromov–Witten invariantHodge bundleModuli of algebraic curvesStable curve Morphisms Hasse–Witt matrixRiemann–Hurwitz formulaPrym varietyWeber's theorem Singularities AcnodeCrunodeCuspDelta invariantTacnode Vector bundles Birkhoff–Grothendieck theoremStable vector bundleVector bundles on algebraic curves Categories: Theorems in algebraic geometryTheorems in complex geometry

Si quieres conocer otros artículos parecidos a AF+BG theorem puedes visitar la categoría Theorems in algebraic geometry.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.


Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información