Ado's theorem

Ado's theorem In abstract algebra, Ado's theorem is a theorem characterizing finite-dimensional Lie algebras.

Contenu 1 Déclaration 2 Histoire 3 Conséquences 4 Références 5 External links Statement Ado's theorem states that every finite-dimensional Lie algebra L over a field K of characteristic zero can be viewed as a Lie algebra of square matrices under the commutator bracket. Plus précisément, the theorem states that L has a linear representation ρ over K, on a finite-dimensional vector space V, that is a faithful representation, making L isomorphic to a subalgebra of the endomorphisms of V.

History The theorem was proved in 1935 by Igor Dmitrievich Ado of Kazan State University, a student of Nikolai Chebotaryov.

The restriction on the characteristic was later removed by Kenkichi Iwasawa (see also the below Gerhard Hochschild paper for a proof).

Implications While for the Lie algebras associated to classical groups there is nothing new in this, the general case is a deeper result. Applied to the real Lie algebra of a Lie group G, it does not imply that G has a faithful linear representation (which is not true in general), but rather that G always has a linear representation that is a local isomorphism with a linear group.

References Ado, Igor D. (1935), "Note on the representation of finite continuous groups by means of linear substitutions", Izv. Fiz.-Mat. Obsch. (Kazan'), 7: 1–43. (Russian language) Ado, Igor D. (1947), "The representation of Lie algebras by matrices", Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk (en russe), 2 (6): 159–173, ISSN 0042-1316, M 0027753 translation in Ado, Igor D. (1949), "The representation of Lie algebras by matrices", American Mathematical Society Translations, 1949 (2): 21, ISSN 0065-9290, M 0030946 Iwasawa, Kenkichi (1948), "On the representation of Lie algebras", Japanese Journal of Mathematics, 19: 405–426, M 0032613 Harish-Chandra (1949), "Faithful representations of Lie algebras", Annales de Mathématiques, Deuxième série, 50: 68–76, est ce que je:10.2307/1969352, ISSN 0003-486X, JSTOR 1969352, M 0028829 Hochschild, Gérard (1966), "An addition to Ado's theorem", Actes de l'American Mathematical Society, 17: 531–533, est ce que je:10.1090/s0002-9939-1966-0194482-0 Nathan Jacobson, Algèbres de Lie, pp. 202–203 External links Ado’s theorem, comments and a proof of Ado's theorem in Terence Tao's blog What's new. Catégories: Lie algebrasTheorems about algebras

Si vous voulez connaître d'autres articles similaires à Ado's theorem vous pouvez visiter la catégorie Lie algebras.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations