Abel's theorem

En mathématiques, Abel's theorem for power series relates a limit of a power series to the sum of its coefficients. It is named after Norwegian mathematician Niels Henrik Abel.

Abel's theorem

Aller à la navigation
Aller à la recherche

This article is about Abel's theorem on power series. For Abel's theorem on algebraic curves, voir Abel–Jacobi map. For Abel's theorem on the insolubility of the quintic equation, voir Abel–Ruffini theorem. For Abel's theorem on linear differential equations, voir Abel's identity. For Abel's theorem on irreducible polynomials, voir Abel's irreducibility theorem. For Abel's formula for summation of a series, using an integral, voir Abel's summation formula.
""
This article includes a list of references, related reading ou external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (Février 2013) (Découvrez comment et quand supprimer ce modèle de message)

Dans mathématiques, Abel's theorem pour power series relates a limit of a power series to the sum of its coefficients.

It is named after Norwegian mathematician Niels Henrik Abel.

Théorème[]

Laisse le Taylor series

g ( X ) = k = 0 un k X k {style d'affichage G(X)=somme _{k=0}^{infime }un_{k}x^{k}}

"{style

be a power series with real coefficients

un k {style d'affichage a_{k}}

"a_{k}" avec radius of convergence

1. {style d'affichage 1.}

"1." Suppose that the series

k = 0 un k {somme de style d'affichage _{k=0}^{infime }un_{k}}

"{somme

converge.
Alors

g ( X ) {style d'affichage G(X)}

"G(X)" is continuous from the left at

X = 1 , {displaystyle x=1,}

"{displaystyle C'est,

lim X 1 g ( X ) = k = 0 un k . {style d'affichage lim _{xto 1^{-}}g(X)=somme _{k=0}^{infime }un_{k}.}

"{style

The same theorem holds for complex power series

g ( z ) = k = 0 un k z k , {style d'affichage G(z)=somme _{k=0}^{infime }un_{k}z ^{k},}

"{style

provided that

z 1 {displaystyle zto 1}

"{displaystyle entirely within a single Stolz sector, C'est, a region of the open unit disk where

| 1 z | M ( 1 | z | ) {style d'affichage |1-z|leq M(1-|z|)}

"{style

for some fixed finite

1}"> M > 1 {style d'affichage M>1}

"{displaystyle1}">.

Without this restriction, the limit may fail to exist: par exemple, the power series

0}{frac {z^{3^{n}}-z^{2cdot 3^{n}}}{n}}}"> n > 0 z 3 n z 2 3 n n {somme de style d'affichage _{n>0}{frac {z ^{3^{n}}-z ^{2cdot 3^{n}}}{n}}}

"{somme0}{frac {z^{3^{n}}-z ^{2cdot 3^{n}}}{n}}}">

converge vers

0 {style d'affichage 0}

"{style à

z = 1 , {style d'affichage z = 1,}

"{style but is unbounded near any point of the form

e Pi je / 3 n , {style d'affichage e^{pi i/3^{n}},}

"{style so the value at

z = 1 {style d'affichage z = 1}

"z=1" is not the limit as

z {style d'affichage avec}

"z" tends to 1 in the whole open disk.

Notez que

g ( z ) {style d'affichage G(z)}

"G(z)" is continuous on the real closed interval

[ 0 , t ] {style d'affichage [0,t]}

"[0,t]" pour

t < 1 , {style d'affichage t<1,}

"{style by virtue of the uniform convergence of the series on compact subsets of the disk of convergence. Abel's theorem allows us to say more, namely that

g ( z ) {style d'affichage G(z)}

"G(z)" is continuous on

[ 0 , 1 ] . {style d'affichage [0,1].}

"{style

Remarques[]

As an immediate consequence of this theorem, si

z {style d'affichage avec}

"z" is any nonzero complex number for which the series

k = 0 un k z k {somme de style d'affichage _{k=0}^{infime }un_{k}z ^{k}}

"{somme

converge, then it follows that

lim t 1 g ( t z ) = k = 0 un k z k {style d'affichage lim _{tto 1^{-}}g(tz)=somme _{k=0}^{infime }un_{k}z ^{k}}

"{style

in which the limit is taken from below.

The theorem can also be generalized to account for sums which diverge to infinity.[citation requise] Si

k = 0 un k = {somme de style d'affichage _{k=0}^{infime }un_{k}=infty }

"{somme

alors

lim z 1 g ( z ) . {style d'affichage lim _{zto 1^{-}}g(z)à l'infini .}

"{style

Cependant, if the series is only known to be divergent, but for reasons other than diverging to infinity, then the claim of the theorem may fail: prendre, par exemple, the power series for

1 1 + z . {style d'affichage {frac {1}{1+z}}.}

"{style

At

z = 1 {style d'affichage z = 1}

"z=1" the series is equal to

1 1 + 1 1 + , {displaystyle 1-1+1-1+cdots ,}

"{displaystyle mais

1 1 + 1 = 1 2 . {style d'affichage {tfrac {1}{1+1}}={tfrac {1}{2}}.}

"{style

We also remark the theorem holds for radii of convergence other than

R = 1 {displaystyle R=1}

"R=1": laisser

g ( X ) = k = 0 un k X k {style d'affichage G(X)=somme _{k=0}^{infime }un_{k}x^{k}}

"{style

be a power series with radius of convergence

R , {style d'affichage R,}

"R," and suppose the series converges at

X = R . {displaystyle x=R.}

"{displaystyle Alors

g ( X ) {style d'affichage G(X)}

"G(X)" is continuous from the left at

X = R , {displaystyle x=R,}

"{displaystyle C'est,

lim X R g ( X ) = g ( R ) . {style d'affichage lim _{xto R^{-}}g(X)=G(R).}

"{style

Applications[]

The utility of Abel's theorem is that it allows us to find the limit of a power series as its argument (C'est,

z {style d'affichage avec}

"z") approches

1 {style d'affichage 1}

"1" from below, even in cases where the radius of convergence,

R , {style d'affichage R,}

"R," of the power series is equal to

1 {style d'affichage 1}

"1" and we cannot be sure whether the limit should be finite or not. See for example, la binomial series. Abel's theorem allows us to evaluate many series in closed form. Par exemple, lorsque

un k = ( 1 ) k k + 1 , {style d'affichage a_{k}={frac {(-1)^{k}}{k+1}},}

"{style

on obtient

g un ( z ) = dans ( 1 + z ) z , 0 < z < 1 , {style d'affichage G_{un}(z)={frac {dans(1+z)}{z}},qquad 0<z<1,}

"{style

by integrating the uniformly convergent geometric power series term by term on

[ z , 0 ] {style d'affichage [-z,0]}

"[-z,0]"

k = 0 ( 1 ) k k + 1 {somme de style d'affichage _{k=0}^{infime }{frac {(-1)^{k}}{k+1}}}

"{somme

converge vers

dans ( 2 ) {style d'affichage ln(2)}

"ln(2)" by Abel's theorem. De la même manière,

k = 0 ( 1 ) k 2 k + 1 {somme de style d'affichage _{k=0}^{infime }{frac {(-1)^{k}}{2k+1}}}

"{somme

converge vers

arctan ( 1 ) = Pi 4 . {displaystyle arctan(1)={tfrac {pi }{4}}.}

"{displaystyle

g un ( z ) {style d'affichage G_{un}(z)}

"G_{un}(z)" is called the generating function of the sequence

un . {displaystyle a.}

"a." Abel's theorem is frequently useful in dealing with generating functions of real-valued and non-negative séquences, tel que probability-generating functions. En particulier, it is useful in the theory of Galton–Watson processes.

Aperçu de la preuve[]

After subtracting a constant from

un 0 , {style d'affichage a_{0},}

"{style we may assume that

k = 0 un k = 0. {somme de style d'affichage _{k=0}^{infime }un_{k}=0.}

"{somme Laisser

s n = k = 0 n un k . {style d'affichage s_{n}=somme _{k=0}^{n}un_{k}!.}

"{style Then substituting

un k = s k s k 1 {style d'affichage a_{k}=s_{k}-s_{k-1}}

"{style and performing a simple manipulation of the series (summation by parts) résulte en

g un ( z ) = ( 1 z ) k = 0 s k z k . {style d'affichage G_{un}(z)=(1-z)somme _{k=0}^{infime }s_{k}z ^{k}.}

"{style

Given

0,}"> e > 0 , {displaystyle varepsilon >0,}

"varepsilon 0,"> pick

n {displaystyle n}

"n" large enough so that

| s k | < e {style d'affichage |s_{k}|<varepsilon }

"{style pour tous

k n {displaystyle kgeq n}

"{displaystyle and note that

| ( 1 z ) k = n s k z k | e | 1 z | k = n | z | k = e | 1 z | | z | n 1 | z | < e M {style d'affichage à gauche|(1-z)somme _{k=n}^{infime }s_{k}z ^{k}droit|leq varepsilon |1-z|somme _{k=n}^{infime }|z|^{k}=varepsilon |1-z|{frac {|z|^{n}}{1-|z|}}<varepsilon M}

"{style

lorsque

z {style d'affichage avec}

"z" lies within the given Stolz angle. Whenever

z {style d'affichage avec}

"z" is sufficiently close to

1 {style d'affichage 1}

"1" Nous avons

| ( 1 z ) k = 0 n 1 s k z k | < e , {style d'affichage à gauche|(1-z)somme _{k=0}^{n-1}s_{k}z ^{k}droit|<varepsilon ,}

"{style

pour que

| g un ( z ) | < ( M + 1 ) e {style d'affichage à gauche|G_{un}(z)droit|<(M+1)varepsilon }

"{style lorsque

z {style d'affichage avec}

"z" is both sufficiently close to

1 {style d'affichage 1}

"1" and within the Stolz angle.

Converses to a theorem like Abel's are called Tauberian theorems: There is no exact converse, but results conditional on some hypothesis. The field of divergent series, and their summation methods, contains many theorems of abelian type et of tauberian type.

Voir également[]

Lectures complémentaires[]

  • Ahlfors, Lars Valerian (Septembre 1, 1980). Complex Analysis (Third ed.). McGraw Hill Higher Education. pp. 41–42. ISBN 0-07-085008-9. - Ahlfors called it Abel's limit theorem.

Liens externes[]


Si vous voulez connaître d'autres articles similaires à Abel's theorem vous pouvez visiter la catégorie Mathematical series.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations